有關(guān)八年級數(shù)學(xué)教案5篇_第1頁
有關(guān)八年級數(shù)學(xué)教案5篇_第2頁
有關(guān)八年級數(shù)學(xué)教案5篇_第3頁
有關(guān)八年級數(shù)學(xué)教案5篇_第4頁
有關(guān)八年級數(shù)學(xué)教案5篇_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

有關(guān)八年級數(shù)學(xué)教案5篇有關(guān)八年級數(shù)學(xué)教案范文1

教學(xué)任務(wù)分析

教學(xué)目標(biāo)

知識技能

探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

數(shù)學(xué)思考

能夠運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析問題能力和計算能力.

解決問題

通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想.

情感態(tài)度

在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗.

重點

等腰梯形的性質(zhì)及其應(yīng)用.

難點

解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線),及梯形有關(guān)知識的應(yīng)用.

教學(xué)流程安排

活動流程圖

活動的內(nèi)容和目的

活動1想一想

活動2說一說

活動3畫一畫

活動4做—做

活動5練一練

活動6理一理

觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.

了解梯形定義、各部分名稱及分類.

通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的.轉(zhuǎn)化關(guān)系.

探究得到等腰梯形的性質(zhì).

通過解決具體問題,尋找解決梯形問題的方法.

通過整理回顧,鞏固知識、提高能力、滲透思想.

教學(xué)過程設(shè)計

問題與情景

師生行為

設(shè)計意圖

[活動1]

觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

演示圖片,學(xué)生欣賞.

結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

由現(xiàn)實中實際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點,培養(yǎng)學(xué)生的觀察、概括能力.

[活動2]

梯形定義一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

學(xué)生根據(jù)梯形概念畫出圖形,教師可以進一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.

問題與情景

師生行為

設(shè)計意圖

一些基本概念

(1)(如圖):底、腰、高.

(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一個角是直角的梯形叫做直角梯形.

學(xué)生在小學(xué)已經(jīng)對梯形有一定的感性認(rèn)識,因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后,教師可以強調(diào):①梯形與四邊形的關(guān)系;

②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.

[活動3]

畫一畫

在下列所給圖中的每個三角形中畫一條線段,

(1)怎樣畫才能得到一個梯形?

(2)在哪些三角形中,能夠得到一個等腰梯形?

在學(xué)生獨立探究的基礎(chǔ)上,學(xué)生分組交流.

教師參與小組活動,指導(dǎo)、傾聽學(xué)生交流.針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其正確作圖.

本次活動教師應(yīng)重點關(guān)注:

(1)學(xué)生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

(2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

(3)學(xué)生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質(zhì)疑,從中獲益.

等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設(shè)計了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎(chǔ).

問題與情景

師生行為

設(shè)計意圖

[活動4]

做—做

探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).

在一張方格紙上作一個等腰梯形,連接兩條對角線.

(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;

(2)這個等腰梯形的兩條對角線的長度有什么關(guān)系?

學(xué)生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結(jié)論.

針對不同認(rèn)識水平的學(xué)生,教師指導(dǎo)學(xué)生活動.

師生共同歸納:

①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

②等腰梯形兩腰相等.

③等腰梯形同一底上的兩個角相等.

④等腰梯形的兩條對角線相等.

教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機會,給學(xué)生介紹這兩種輔助線的添加方法.

[活動5]

練—練

例1(教材P118的例1)略.

例2如圖,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的長.

師生共同分析,尋找解決問題的方法和策略.

例1是等腰梯形性質(zhì)的直接運用,請學(xué)生分析、解答,教師聆聽,同時注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

分析:設(shè)法把已知中所給的條件都移到一個三角形中,便可以解決問題.

其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

解:(略)

通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對于學(xué)好梯形內(nèi)容很有幫助.

問題與情景

師生行為

設(shè)計意圖

例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

BE⊥AC于E.

求證:BE=CD.

分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

證明(略)

例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學(xué)或練習(xí)中可以根據(jù)學(xué)生的實際情況,再引導(dǎo)、補充其他輔助線的添加方法,讓學(xué)生多了解、多見識.

[活動6]

1.小結(jié)

2.布置作業(yè)

(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

(2)已知:如圖,

梯形ABCD中,CD//AB,,.

求證:AD=AB—DC.

(3)已知,如圖,

梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結(jié)論)

師生歸納總結(jié):

解決梯形問題常用的方法:

(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

(2)“作高”:使兩腰在兩個直角三角形中(圖2);

(3)“延腰”:構(gòu)造具有公共角的兩個等腰三角形(圖3);

(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

(5)“等積變形”,連結(jié)梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構(gòu)成三角形(圖5).

盡量多地讓學(xué)生參與發(fā)言是一個交流的過程.

梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.

學(xué)生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

有關(guān)八年級數(shù)學(xué)教案范文2

一、教學(xué)目標(biāo)

(一)、知識與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。

(二)、過程與方法:

(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

(三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。

二、教學(xué)重點和難點

重點:因式分解的概念及提公因式法。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過程

教學(xué)環(huán)節(jié):

活動1:復(fù)習(xí)引入

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設(shè)計意圖:

如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

活動2:導(dǎo)入課題

P165的探究(略);

2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

設(shè)計意圖:

引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動3:探究新知

看誰算得準(zhǔn):

計算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動4:歸納、得出新知

比較以下兩種運算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

有關(guān)八年級數(shù)學(xué)教案范文3

學(xué)習(xí)目標(biāo):

1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質(zhì).

2、經(jīng)歷探索軸對稱的性質(zhì)的活動過程,積累數(shù)學(xué)活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.

3、利用軸對稱的基本性質(zhì)解決實際問題。

學(xué)習(xí)重點:靈活運用對應(yīng)點所連的線段被對稱軸垂直平分、對應(yīng)線段相等、對應(yīng)角相等等性質(zhì)。

學(xué)習(xí)難點:軸對稱的性質(zhì)的理解和拓展運用。

學(xué)習(xí)過程:

一、探索活動

如右圖所示,在紙上任意畫一點A,把紙對折,用針在點A處穿孔,再把紙展開,并連接兩針孔A、A.

兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?

1、請同學(xué)們按要求畫點、折紙、扎孔,仔細(xì)觀察你所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A,直線MN線段AA.

2、那么直線MN為什么會垂直平分線段AA呢?

3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(midpointperpendicular).

例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直平分線.

4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN有什么關(guān)系?

5.如圖,再在紙上任畫一點C,并仿照上面進行操作.

(1)線段AC與AC有什么關(guān)系?BC與BC呢?線段CC與MN有什么關(guān)系?

(2)A與A有什么關(guān)系?B與B呢?△ABC與△ABC有什么關(guān)系?為什么?

(3)軸對稱有哪些性質(zhì)?

6.軸對稱的性質(zhì):

(1)成軸對稱的兩個圖形全等.

(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.

二、例題講解

例1、(1)如圖,A、B、C、D的對稱點分別是,線段AC、AB的對應(yīng)線段分別是,CD=,CBA=,ADC=.

(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測量的方法驗證.

(3)AE與BF平行嗎?為什么?

(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定互相平行嗎?

(5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?

有關(guān)八年級數(shù)學(xué)教案范文4

一、學(xué)生起點分析

學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?

反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。

二、學(xué)習(xí)任務(wù)分析

本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學(xué)目標(biāo):

●知識與技能目標(biāo)

1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

●過程與方法目標(biāo)

1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

2.經(jīng)歷從實驗到驗證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

●情感與態(tài)度目標(biāo)

1.體驗生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

2.在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心。

教學(xué)重點

理解勾股定理逆定理的具體內(nèi)容。

三、教法學(xué)法

1.教學(xué)方法:實驗猜想歸納論證

本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學(xué)結(jié)論已有一定的體驗

但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

(2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;

(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

2.課前準(zhǔn)備

教具:教材、電腦、多媒體課件。

學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

四、教學(xué)過程設(shè)計

本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

第一環(huán)節(jié):情境引入

內(nèi)容:

情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

意圖:

通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

效果:

從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

第二環(huán)節(jié):合作探究

內(nèi)容1:探究

下面有三組數(shù),分別是一個三角形的三邊長,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

1.這三組數(shù)都滿足嗎?

2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

意圖:

通過學(xué)生的合作探究,得出若一個三角形的三邊長,滿足,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

效果:

經(jīng)過學(xué)生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足,可以構(gòu)成直角三角形;②7,24,25滿足,可以構(gòu)成直角三角形;③8,15,17滿足,可以構(gòu)成直角三角形。

從上面的分組實驗很容易得出如下結(jié)論:

如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形

內(nèi)容2:說理

提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:

如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形

滿足的三個正整數(shù),稱為勾股數(shù)。

注意事項:為了讓學(xué)生確認(rèn)該結(jié)論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。

活動3:反思總結(jié)

提問:

1.同學(xué)們還能找出哪些勾股數(shù)呢?

2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

4.通過今天同學(xué)們合作探究,你能體驗出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

意圖:進一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

第三環(huán)節(jié):小試牛刀

內(nèi)容:

1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

①9,12,15;②15,36,39;③12,35,36;④12,18,22

解答:①②

2.一個三角形的三邊長分別是,則這個三角形的面積是()

A250B150C200D不能確定

解答:B

3.如圖1:在中,于,,則是()

A等腰三角形B銳角三角形

C直角三角形D鈍角三角形

解答:C

4.將直角三角形的三邊擴大相同的倍數(shù)后,(圖1)

得到的三角形是()

A直角三角形B銳角三角形

C鈍角三角形D不能確定

解答:A

意圖:

通過練習(xí),加強對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

效果

每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。

第四環(huán)節(jié):登高望遠

內(nèi)容:

1.一個零件的形狀如圖2所示,按規(guī)定這個零件中都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

解答:符合要求,又,

2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

解答:由題意畫出相應(yīng)的圖形

AB=240海里,BC=70海里,,AC=250海里;在△ABC中

=(250+240)(250-240)

=4900==即△ABC是Rt△

答:船轉(zhuǎn)彎后,是沿正西方向航行的。

意圖:

利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

效果:

學(xué)生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將作適當(dāng)變形(),以便于計算。

第五環(huán)節(jié):鞏固提高

內(nèi)容:

1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1,圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

圖4圖5

解答:④⑤是直角三角形,①②③⑥不是直角三角形

意圖:

第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進行計算,從而解決問題。

效果:

學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

第六環(huán)節(jié):交流小結(jié)

內(nèi)容:

師生相互交流總結(jié)出:

1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形;②滿足的三個正整數(shù),稱為勾股數(shù);

2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將作適當(dāng)變形,便于計算。

意圖:

鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。

效果:

學(xué)生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應(yīng)用。

第七環(huán)節(jié):布置作業(yè)

課本習(xí)題1.4第1,2,4題。

五、教學(xué)反思:

1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長,滿足,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

2.注重引導(dǎo)學(xué)生積極參與實驗活動,從中體驗任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

3.在利用今天所學(xué)知識解決實際問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論