版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省湖州、衢州、麗水三地市高三下十月階段性考試試題數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.2.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.函數(shù)()的圖像可以是()A. B.C. D.4.已知函數(shù),不等式對(duì)恒成立,則的取值范圍為()A. B. C. D.5.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.6.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.7.點(diǎn)為棱長是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長度為()A. B. C. D.8.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)9.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.10.下邊程序框圖的算法源于我國古代的中國剩余定理.把運(yùn)算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1911.以,為直徑的圓的方程是A. B.C. D.12.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為正實(shí)數(shù),且,則的最小值為____________.14.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為______.15.在的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開式中的常數(shù)項(xiàng)等于_____.16.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護(hù)人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.18.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.19.(12分)在銳角中,,,分別是角,,所對(duì)的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.20.(12分)若養(yǎng)殖場(chǎng)每個(gè)月生豬的死亡率不超過,則該養(yǎng)殖場(chǎng)考核為合格,該養(yǎng)殖場(chǎng)在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場(chǎng)2019年2月到6月這5個(gè)月中任意選取3個(gè)月,求恰好有2個(gè)月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預(yù)計(jì)在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬只,試估計(jì):該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,參考數(shù)據(jù):.21.(12分)為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個(gè)數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為(單位:元),求的分布列和數(shù)學(xué)期望;(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費(fèi).22.(10分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【題目詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【題目點(diǎn)撥】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.2、C【解題分析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【題目詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【題目點(diǎn)撥】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.3、B【解題分析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【題目詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【題目點(diǎn)撥】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.4、C【解題分析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【題目詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時(shí)取最大值,所以.故選:.【題目點(diǎn)撥】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.5、B【解題分析】
由模長公式求解即可.【題目詳解】,當(dāng)時(shí)取等號(hào),所以本題答案為B.【題目點(diǎn)撥】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.6、B【解題分析】
根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【題目詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【題目點(diǎn)撥】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.7、C【解題分析】
設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長度.【題目詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長度為.故選:C【題目點(diǎn)撥】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.8、A【解題分析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.9、B【解題分析】
利用乘法運(yùn)算化簡復(fù)數(shù)即可得到答案.【題目詳解】由已知,,所以,解得.故選:B【題目點(diǎn)撥】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.10、B【解題分析】
由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過程,代入四個(gè)選項(xiàng)進(jìn)行驗(yàn)證即可.【題目詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【題目點(diǎn)撥】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用循環(huán)模擬或代入選項(xiàng)驗(yàn)證的方法進(jìn)行解答.11、A【解題分析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【題目詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【題目點(diǎn)撥】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.12、C【解題分析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,由實(shí)部為0且虛部不為0求解即可.【題目詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
,所以有,再利用基本不等式求最值即可.【題目詳解】由已知,,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.故答案為:【題目點(diǎn)撥】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.14、【解題分析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.15、1【解題分析】
由題意可得,再利用二項(xiàng)展開式的通項(xiàng)公式,求得二項(xiàng)展開式常數(shù)項(xiàng)的值.【題目詳解】的二項(xiàng)展開式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,,通項(xiàng)公式為,令,求得,可得二項(xiàng)展開式常數(shù)項(xiàng)等于,故答案為1.【題目點(diǎn)撥】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16、161【解題分析】
由題意可知出院人數(shù)構(gòu)成一個(gè)首項(xiàng)為1,公比為2的等比數(shù)列,由此可求結(jié)果.【題目詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項(xiàng),2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【題目點(diǎn)撥】本題主要考查了等比數(shù)列在實(shí)際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;
(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【題目詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【題目點(diǎn)撥】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡整理的運(yùn)算能力,屬于中檔題.18、(1)見解析(2)【解題分析】
(1)設(shè)的中點(diǎn)為,連接.由展開圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【題目詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【題目點(diǎn)撥】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關(guān)鍵,難度一般.19、A【解題分析】
由正弦定理化簡得,解得,進(jìn)而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進(jìn)而化簡,即可求解.【題目詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【題目點(diǎn)撥】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.20、(1);(2);(3)利潤約為111.2萬元.【解題分析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個(gè)月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【題目詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個(gè)月份任意選取3個(gè)月份的基本事件有,,,,,,,,,,共計(jì)10個(gè),故恰好有兩個(gè)月考核合格的概率為;(2),,,,故;(3)當(dāng)千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【題目點(diǎn)撥】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎(chǔ)題.21、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解題分析】
(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《設(shè)備保養(yǎng)的重要性》課件
- 《政府公共禮品》課件
- 2025屆福建省上杭縣一中高三壓軸卷數(shù)學(xué)試卷含解析
- 山東省濰坊市第一中學(xué)2025屆高三最后一卷英語試卷含解析
- 江西省上高縣第二中學(xué)2025屆高三二診模擬考試語文試卷含解析
- 甘肅肅蘭州市第五十一中學(xué)2025屆高考英語五模試卷含解析2
- 湖北省鋼城四中2025屆高三下第一次測(cè)試語文試題含解析
- 廣西壯族自治區(qū)欽州市2025屆高三最后一卷語文試卷含解析
- 湖北省隨州一中2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析
- 浙江教育綠色評(píng)價(jià)聯(lián)盟2025屆高三最后一卷語文試卷含解析
- 2024年中國人壽:國壽健康產(chǎn)業(yè)投資有限公司招聘筆試參考題庫含答案解析
- GB 5009.191-2024食品安全國家標(biāo)準(zhǔn)食品中氯丙醇及其脂肪酸酯、縮水甘油酯的測(cè)定
- XX電站接地裝置的熱穩(wěn)定校驗(yàn)報(bào)告(220kV)
- 政府會(huì)計(jì)-課后習(xí)題參考答案 童光輝
- 2024年全過程工程造價(jià)咨詢合同
- 音樂節(jié)演出合作協(xié)議書
- 2024年科技創(chuàng)新助力農(nóng)業(yè)現(xiàn)代化引領(lǐng)農(nóng)業(yè)發(fā)展新方向
- 2024年自考中國近代史綱要試題及答案
- 高職院校體育與健康教程全套教學(xué)課件
- 《學(xué)寫文學(xué)短評(píng)》統(tǒng)編版高一語文必修上冊(cè)
- 幼兒園生活觀察與指導(dǎo)
評(píng)論
0/150
提交評(píng)論