版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省淮海中學(xué)2024屆高三第二次高考科目教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.2.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.3.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點(diǎn),若點(diǎn)為上的任意一點(diǎn),則的取值范圍為()A. B. C. D.4.連接雙曲線及的4個頂點(diǎn)的四邊形面積為,連接4個焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.5.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形6.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.7.將函數(shù)圖象上所有點(diǎn)向左平移個單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.8.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)9.已知定義在上的奇函數(shù)滿足,且當(dāng)時,,則()A.1 B.-1 C.2 D.-210.已知函數(shù)滿足當(dāng)時,,且當(dāng)時,;當(dāng)時,且).若函數(shù)的圖象上關(guān)于原點(diǎn)對稱的點(diǎn)恰好有3對,則的取值范圍是()A. B. C. D.11.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.12.已知正方體的棱長為,,,分別是棱,,的中點(diǎn),給出下列四個命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開___.14.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.15.內(nèi)角,,的對邊分別為,,,若,則__________.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度18.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.19.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).20.(12分)已知函數(shù).⑴當(dāng)時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點(diǎn)?若有,請求出極值點(diǎn)的個數(shù);若沒有,請說明理由.22.(10分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實(shí)根,求實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【題目詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【題目點(diǎn)撥】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識的理解掌握水平.2、A【解題分析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【題目詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【題目點(diǎn)撥】本題考查拋物線的方程應(yīng)用,同時也考查了焦半徑公式等.屬于中檔題.3、D【解題分析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【題目詳解】由題設(shè)有,故,故橢圓,因?yàn)辄c(diǎn)為上的任意一點(diǎn),故.又,因?yàn)?,故,所?故選:D.【題目點(diǎn)撥】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點(diǎn)分別是,點(diǎn)為上的任意一點(diǎn),則有,我們常用這個性質(zhì)來考慮與焦點(diǎn)三角形有關(guān)的問題,本題屬于基礎(chǔ)題.4、D【解題分析】
先求出四個頂點(diǎn)、四個焦點(diǎn)的坐標(biāo),四個頂點(diǎn)構(gòu)成一個菱形,求出菱形的面積,四個焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【題目詳解】雙曲線與互為共軛雙曲線,四個頂點(diǎn)的坐標(biāo)為,四個焦點(diǎn)的坐標(biāo)為,四個頂點(diǎn)形成的四邊形的面積,四個焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【題目點(diǎn)撥】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.5、B【解題分析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【題目詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【題目點(diǎn)撥】本題主要考查了對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.6、D【解題分析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.7、B【解題分析】
根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【題目詳解】將函數(shù)圖象上所有點(diǎn)向左平移個單位長度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時,,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【題目點(diǎn)撥】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.8、D【解題分析】
原問題轉(zhuǎn)化為有四個不同的實(shí)根,換元處理令t,對g(t)進(jìn)行零點(diǎn)個數(shù)討論.【題目詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【題目點(diǎn)撥】此題考查方程的根與函數(shù)零點(diǎn)問題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.9、B【解題分析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【題目詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質(zhì)可得;∴;∴時,;∴.故選:B.【題目點(diǎn)撥】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.10、C【解題分析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,分類利用圖像列出有3個交點(diǎn)時滿足的條件,解之即可.【題目詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,如圖所示,當(dāng)時,對稱后的圖象不可能與在的圖象有3個交點(diǎn);當(dāng)時,要使函數(shù)關(guān)于原點(diǎn)對稱后的圖象與所作的圖象有3個交點(diǎn),則,解得.故選:C.【題目點(diǎn)撥】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.11、B【解題分析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【題目詳解】由題意知:定義域?yàn)?,,為偶函?shù),當(dāng)時,,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【題目點(diǎn)撥】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡不等式.12、C【解題分析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【題目詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【題目點(diǎn)撥】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】由題意得,解得定義域?yàn)椋?4、【解題分析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【題目詳解】因?yàn)?,所以.又因?yàn)?,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【題目點(diǎn)撥】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.15、【解題分析】∵,∴,即,∴,∴.16、1【解題分析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【題目詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【題目點(diǎn)撥】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分18、(1)(2)證明見解析【解題分析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【題目詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時取等號).所以成立,故成立.【題目點(diǎn)撥】本題考查分類討論法解絕對值不等式,基本不等式的應(yīng)用,屬于中檔題.19、(1)(2)證明見解析【解題分析】
(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點(diǎn)差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【題目詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).【題目點(diǎn)撥】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.20、(1)當(dāng)時,函數(shù)取得極小值為,無極大值;(2)【解題分析】試題分析:(1),通過求導(dǎo)分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導(dǎo)討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域?yàn)楫?dāng)時,,所以所以當(dāng)時,,當(dāng)時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時,函數(shù)取得極小值為,無極大值;(2)設(shè)函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同,則所以所以,代入得:設(shè),則不妨設(shè)則當(dāng)時,,當(dāng)時,所以在區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《設(shè)備保養(yǎng)的重要性》課件
- 《政府公共禮品》課件
- 2025屆福建省上杭縣一中高三壓軸卷數(shù)學(xué)試卷含解析
- 山東省濰坊市第一中學(xué)2025屆高三最后一卷英語試卷含解析
- 江西省上高縣第二中學(xué)2025屆高三二診模擬考試語文試卷含解析
- 甘肅肅蘭州市第五十一中學(xué)2025屆高考英語五模試卷含解析2
- 湖北省鋼城四中2025屆高三下第一次測試語文試題含解析
- 廣西壯族自治區(qū)欽州市2025屆高三最后一卷語文試卷含解析
- 湖北省隨州一中2025屆高考數(shù)學(xué)倒計(jì)時模擬卷含解析
- 浙江教育綠色評價(jià)聯(lián)盟2025屆高三最后一卷語文試卷含解析
- 《半山海景別墅》課件
- 肝硬化腹水診療指南(2023版)解讀
- 道德與法治三年級上冊第一單元教學(xué)設(shè)計(jì)(學(xué)習(xí)伴我成長)
- 河(湖)巡查記錄表
- 《資源加工學(xué)》課后習(xí)題答案x-
- 安全生產(chǎn)資格考試考務(wù)管理辦法(全套資料)
- 坐標(biāo)紙(A4紙直接打印就可用)
- 第八章 電解質(zhì)溶液-南大物理化學(xué)
- 神筆馬良-中國故事英文版課件
- 《JGJ52-2006普通混凝土用砂、石質(zhì)量及檢驗(yàn)方法標(biāo)準(zhǔn)》
- MSA-GRR數(shù)據(jù)自動生成工具(已經(jīng)解密)
評論
0/150
提交評論