山東省鄆城縣聯(lián)考2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
山東省鄆城縣聯(lián)考2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
山東省鄆城縣聯(lián)考2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
山東省鄆城縣聯(lián)考2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
山東省鄆城縣聯(lián)考2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省鄆城縣聯(lián)考2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x12.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當(dāng)長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.3.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠14.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1255.下面調(diào)查中,適合采用全面調(diào)查的是()A.對南寧市市民進(jìn)行“南寧地鐵1號線線路”B.對你安寧市食品安全合格情況的調(diào)查C.對南寧市電視臺《新聞在線》收視率的調(diào)查D.對你所在的班級同學(xué)的身高情況的調(diào)查6.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.7.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.98.被譽(yù)為“中國天眼”的世界上最大的單口徑球面射電望遠(yuǎn)鏡FAST的反射面總面積約為250000m2,則250000用科學(xué)記數(shù)法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m29.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.910.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.在實數(shù)﹣2、0、﹣1、2、中,最小的是_______.12.因式分解:4x2y﹣9y3=_____.13.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達(dá)碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)14.分式方程的解為x=_____.15.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.16.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設(shè)有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.三、解答題(共8題,共72分)17.(8分)6月14日是“世界獻(xiàn)血日”,某市采取自愿報名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時要對獻(xiàn)血者的血型進(jìn)行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為人,m=;補(bǔ)全上表中的數(shù)據(jù);若這次活動中該市有3000人義務(wù)獻(xiàn)血,請你根據(jù)抽樣結(jié)果回答:從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?18.(8分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.19.(8分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).20.(8分)已知拋物線的開口向上頂點為P(1)若P點坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值21.(8分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.22.(10分)如圖,菱形中,分別是邊的中點.求證:.23.(12分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.24.如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.2、B【解題分析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.3、C【解題分析】

根據(jù)分式和二次根式有意義的條件進(jìn)行計算即可.【題目詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【題目點撥】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關(guān)鍵.4、B【解題分析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【題目詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【題目點撥】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.5、D【解題分析】

根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【題目詳解】A、對南寧市市民進(jìn)行“南寧地鐵1號線線路”適宜采用抽樣調(diào)查方式;B、對你安寧市食品安全合格情況的調(diào)查適宜采用抽樣調(diào)查方式;C、對南寧市電視臺《新聞在線》收視率的調(diào)查適宜采用抽樣調(diào)查方式;D、對你所在的班級同學(xué)的身高情況的調(diào)查適宜采用普查方式;故選D.【題目點撥】本題考查的是抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.6、C【解題分析】作點A關(guān)于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關(guān)于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.7、B【解題分析】

作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【題目詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.8、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù).【題目詳解】解:由科學(xué)記數(shù)法可知:250000m2=2.5×105m2,故選C.【題目點撥】此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.9、A【解題分析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理10、C【解題分析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1.【解題分析】

解:在實數(shù)﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.【題目點撥】本題考查實數(shù)大小比較.12、y(2x+3y)(2x-3y)【解題分析】

直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【題目詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【題目點撥】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.13、1【解題分析】

作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【題目詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【題目點撥】本題考查了解直角三角形的應(yīng)用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.14、2【解題分析】根據(jù)分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.15、【解題分析】

設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【題目詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【題目點撥】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.16、【解題分析】分析:根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.三、解答題(共8題,共72分)17、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解題分析】【分析】(1)用AB型的人數(shù)除以它所占的百分比得到隨機(jī)抽取的獻(xiàn)血者的總?cè)藬?shù),然后用B型的人數(shù)除以抽取的總?cè)藬?shù)即可求得m的值;(2)先計算出O型的人數(shù),再計算出A型人數(shù),從而可補(bǔ)全上表中的數(shù)據(jù);(3)用樣本中A型的人數(shù)除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數(shù).【題目詳解】(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為5÷10%=50(人),所以m=×100=20,故答案為50,20;(2)O型獻(xiàn)血的人數(shù)為46%×50=23(人),A型獻(xiàn)血的人數(shù)為50﹣10﹣5﹣23=12(人),補(bǔ)全表格中的數(shù)據(jù)如下:血型ABABO人數(shù)1210523故答案為12,23;(3)從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估計這3000人中大約有720人是A型血.【題目點撥】本題考查了扇形統(tǒng)計圖、統(tǒng)計表、概率公式、用樣本估計總體等,讀懂統(tǒng)計圖、統(tǒng)計表,從中找到必要的信息是解題的關(guān)鍵;隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).18、見解析【解題分析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【題目詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【題目點撥】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.19、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解題分析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點Q的坐標(biāo),然后用Q點縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標(biāo)為(1,)或(1,).點睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點;后兩個小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解題分析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進(jìn)行討論即可.【題目詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時,y隨著x的增大而減小當(dāng)x=-1時,y=a+(4a+1)+3=4+5a當(dāng)x=2時,y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時,1-4a≤y≤4+5a;(3)當(dāng)a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時,拋物線上的點可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時,y=3當(dāng)x=1時,y=b+4當(dāng)x=-時,y=-+3①當(dāng)一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當(dāng),即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【題目點撥】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點到x軸距離的最大值的點不同.21、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解題分析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.22、證明見解析.【解題分析】

根據(jù)菱形的性質(zhì),先

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論