廣西柳州市城中學區(qū)龍城中學2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
廣西柳州市城中學區(qū)龍城中學2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
廣西柳州市城中學區(qū)龍城中學2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
廣西柳州市城中學區(qū)龍城中學2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
廣西柳州市城中學區(qū)龍城中學2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西柳州市城中學區(qū)龍城中學2024學年中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉(zhuǎn)180°,得到的對應點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)2.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.3.汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m4.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n5.下列計算正確的是()A.x+x=x2B.x·x=2xC.(6.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形7.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是()A. B. C. D.8.下列四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.19.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°10.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側(cè)面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2二、填空題(本大題共6個小題,每小題3分,共18分)11.﹣|﹣1|=______.12.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.13.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是.14.小青在八年級上學期的數(shù)學成績?nèi)缦卤硭荆綍r測驗期中考試期末考試成績869081如果學期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學期的總評成績是_____分.15.在平面直角坐標系xOy中,點A(4,3)為⊙O上一點,B為⊙O內(nèi)一點,請寫出一個符合條件要求的點B的坐標______.16.請你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米!(結(jié)果用科學記數(shù)法表示,已知1克大米約52粒)三、解答題(共8題,共72分)17.(8分)在平面直角坐標系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點A(﹣3,0),與y軸交于點B,此拋物線頂點C到x軸的距離為1.(1)求拋物線的表達式;(2)求∠CAB的正切值;(3)如果點P是x軸上的一點,且∠ABP=∠CAO,直接寫出點P的坐標.18.(8分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.19.(8分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設(shè)計出最省錢的購買方案,并說明理由.20.(8分)如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數(shù)的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.21.(8分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調(diào)查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數(shù);(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數(shù).(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.22.(10分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.23.(12分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.24.先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

根據(jù)點N(–1,–2)繞點O旋轉(zhuǎn)180°,所得到的對應點與點N關(guān)于原點中心對稱求解即可.【題目詳解】∵將點N(–1,–2)繞點O旋轉(zhuǎn)180°,∴得到的對應點與點N關(guān)于原點中心對稱,∵點N(–1,–2),∴得到的對應點的坐標是(1,2).故選A.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應點與點N關(guān)于原點中心對稱是解答本題的關(guān)鍵.2、D【解題分析】

根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【題目詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【題目點撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.3、B【解題分析】

利用配方法求二次函數(shù)最值的方法解答即可.【題目詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【題目點撥】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關(guān)鍵.4、C【解題分析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關(guān)系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠的點,對應的函數(shù)值越大,5、D【解題分析】分析:根據(jù)合并同類項、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.6、C【解題分析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【題目點撥】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設(shè)AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【題目點撥】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關(guān)性質(zhì)進行推理是解此題的關(guān)鍵.7、D【解題分析】

兩個同心圓被均分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,由此計算出黑色區(qū)域的面積,利用幾何概率的計算方法解答即可.【題目詳解】因為兩個同心圓等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中黑色區(qū)域的面積占了其中的四等份,所以P(飛鏢落在黑色區(qū)域)==.故答案選:D.【題目點撥】本題考查了幾何概率,解題的關(guān)鍵是熟練的掌握幾何概率的相關(guān)知識點.8、A【解題分析】

由于要求四個數(shù)的點中距離原點最遠的點,所以求這四個點對應的實數(shù)絕對值即可求解.【題目詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是-1.故選A.【題目點撥】本題考查了實數(shù)與數(shù)軸的對應關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.9、C【解題分析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【題目詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【題目點撥】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.10、C【解題分析】圓錐的側(cè)面積=底面周長×母線長÷2,把相應數(shù)值代入,圓錐的側(cè)面積=2π×2×5÷2=10π.故答案為C二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解題分析】

原式利用立方根定義,以及絕對值的代數(shù)意義計算即可求出值.【題目詳解】解:原式=3﹣1=2,故答案為:2【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.12、.【解題分析】

解:根據(jù)從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【題目點撥】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質(zhì)及判定方法和概率的計算公式是本題的解題關(guān)鍵.13、-2<k<?!窘忸}分析】

由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯(lián)立,消掉y得,,由解得,.∴當時,拋物線與OA有一個交點,此交點的橫坐標為1.∵點B的坐標為(2,0),∴OA=2,∴點A的坐標為().∴交點在線段AO上.當拋物線經(jīng)過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數(shù)k的取值范圍是-2<k<.【題目詳解】請在此輸入詳解!14、84.2【解題分析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.15、(2,2).【解題分析】

連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點與圓的位置關(guān)系可得一個符合要求的點B的坐標.【題目詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點,∴符合要求的點B的坐標(2,2)答案不唯一.故答案為:(2,2).【題目點撥】考查了點與圓的位置關(guān)系,坐標與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.16、2.5×1【解題分析】

先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學計數(shù)法表示,對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【題目詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【題目點撥】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學計數(shù)法,根據(jù)科學計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、(4)y=﹣x4﹣4x+3;(4);(3)點P的坐標是(4,0)【解題分析】

(4)先求得拋物線的對稱軸方程,然后再求得點C的坐標,設(shè)拋物線的解析式為y=a(x+4)4+4,將點(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐標,然后依據(jù)兩點間的距離公式可得到BC、AB,AC的長,然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;(3)連接BC,可證得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入個數(shù)據(jù)可得OP的值,可得P點坐標.【題目詳解】解:(4)由題意得,拋物線y=ax4+4ax+c的對稱軸是直線,∵a<0,拋物線開口向下,又與x軸有交點,∴拋物線的頂點C在x軸的上方,由于拋物線頂點C到x軸的距離為4,因此頂點C的坐標是(﹣4,4).可設(shè)此拋物線的表達式是y=a(x+4)4+4,由于此拋物線與x軸的交點A的坐標是(﹣3,0),可得a=﹣4.因此,拋物線的表達式是y=﹣x4﹣4x+3.(4)如圖4,點B的坐標是(0,3).連接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC為直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如圖4,連接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴點P的坐標是(4,0).【題目點撥】本題主要考查二次函數(shù)的圖像與性質(zhì),綜合性大.18、(1)詳見解析;(2)BD=9.6.【解題分析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計算方法.19、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當購買1棵甲種樹、133棵乙種樹時,購買費用最低,理由見解析.【解題分析】

(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購買甲種樹a棵,則購買乙種樹(200-a)棵,根據(jù)甲種樹的數(shù)量不少于乙種樹的數(shù)量的可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【題目詳解】解:(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)題意得:

,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設(shè)購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據(jù)題意得:解得:∵a為整數(shù),∴a≥1.∵甲種樹的單價比乙種樹的單價貴,∴當購買1棵甲種樹、133棵乙種樹時,購買費用最低.【題目點撥】一元一次不等式的應用,二元一次方程組的應用,讀懂題目,是解題的關(guān)鍵.20、(1);(2)P點坐標為,;(3)或或或.【解題分析】

(1)根據(jù)待定系數(shù)法把A、C兩點坐標代入可求得二次函數(shù)的解析式;

(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設(shè)出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點坐標;

(3)首先設(shè)出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【題目詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過、兩點的直線為,設(shè)點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設(shè)點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【題目點撥】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.21、(1)1;(2)詳見解析;(3)750;(4).【解題分析】

(1)用排球的人數(shù)÷排球所占的百分比,即可求出抽取學生的人數(shù);(2)足球人數(shù)=學生總?cè)藬?shù)-籃球的人數(shù)-排球人數(shù)-羽毛球人數(shù)-乒乓球人數(shù),即可補全條形統(tǒng)計圖;(3)計算足球的百分比,根據(jù)樣本估計總體,即可解答;(4)利用概率公式計算即可.【題目詳解】(1)30÷15%=1(人).答:共抽取1名學生進行問卷調(diào)查;故答案為1.(2)足球的人數(shù)為:1﹣60﹣30﹣24﹣36=50(人),“足球球”所對應的圓心角的度數(shù)為360°×0.25=90°.如圖所示:(3)3000×0.25=750(人).答:全校學生喜歡足球運動的人數(shù)為750人.(4)畫樹狀圖為:(用A、B、C、D、E分別表示籃球、足球、排球、羽毛球、乒乓球的五張卡片)共有25種等可能的結(jié)果數(shù),選同一項目的結(jié)果數(shù)為5,所以甲乙兩人中有且選同一項目的概率P(A)=.【題目點撥】本題主要考查了條形統(tǒng)計圖,扇形統(tǒng)計圖以及用樣本估計總體的應用,解題時注意:從扇形圖上可以清楚地看出各部分數(shù)量和總數(shù)量之間的關(guān)系.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.22、(1)見解析;(2)見解析【解題分析】

(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可.【題目詳解】解:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論