版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省雅安市2024屆高二數(shù)學第一學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點,則實數(shù)的取值范圍是()A. B.C. D.2.設是等比數(shù)列,且,,則()A.12 B.24C.30 D.323.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.4.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.5.下列橢圓中,焦點坐標是的是()A. B.C. D.6.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對立事件C.甲與丁是對立事件 D.丙與丁是互斥事件7.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.8.上海世博會期間,某日13時至21時累計入園人數(shù)的折線圖如圖所示,那么在13時~14時,14時~15時,…,20時~21時八個時段中,入園人數(shù)最多的時段是()A.13時~14時 B.16時~17時C.18時~19時 D.19時~20時9.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.410.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.11.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.12.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,則該幾何體的體積為______.14.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.15.在△ABC中,角A,B,C所對的邊分別為a,b,c,設△ABC的面積為S,其中,,則S的最大值為______16.設是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.18.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.19.(12分)已知等差數(shù)列滿足,.(1)求的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知數(shù)列的前項和分別是,滿足,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列對任意都有恒成立,求.21.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.22.(10分)分別求出滿足下列條件的橢圓的標準方程:(1)焦點在y軸,短軸長為2,離心率為;(2)短軸一端點P與兩焦點,連線所構成的三角形為等邊三角形
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉化為直線與曲線有兩個交點,利用導數(shù)分析函數(shù)的單調性與極值,數(shù)形結合可得出實數(shù)的取值范圍.【詳解】當時,,,此時兩個函數(shù)的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數(shù)單調遞增,當時,,此時函數(shù)單調遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點.故選:A.2、D【解析】根據(jù)已知條件求得的值,再由可求得結果.【詳解】設等比數(shù)列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數(shù)列基本量的計算,屬于基礎題3、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.4、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A5、B【解析】根據(jù)給定條件逐一分析各選項中的橢圓焦點即可判斷作答.【詳解】對于A,橢圓的焦點在x軸上,A不是;對于B,橢圓,即,焦點在y軸上,半焦距,其焦點為,B是;對于C,橢圓,即,焦點在y軸上,半焦距,其焦點為,C不是;對于D,橢圓,即,焦點在y軸上,半焦距,其焦點為,D不是.故選:B6、D【解析】根據(jù)互斥事件和對立事件的定義判斷【詳解】當?shù)谝淮稳〕?,第二次取出4時,甲丙同時發(fā)生,不互斥不對立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時發(fā)生,但可以同時不發(fā)生,不對立,當?shù)谝淮稳〕?,第二次取出3時,甲與丁同時發(fā)生,不互斥不對立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時發(fā)生,但可以同時不發(fā)生,因此是互斥不對立故選:D7、A【解析】根據(jù)題設可得關于的不等式,從而可求的取值范圍.【詳解】設公差為,因為,,所以,即,從而.故選:A.8、B【解析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【詳解】結合函數(shù)的圖象可知,在13時~14時,14時~15時,…,20時~21時八個時段中,圖象變化最快的為16到17點之間故選:B.【點睛】本題考查折線統(tǒng)計圖的實際應用,屬于基礎題.9、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A10、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質11、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A12、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關鍵點點睛:本題考查利用圓周角求參數(shù),解題的關鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:14、【解析】根據(jù)題意可得,利用推出,進而得出結果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:15、【解析】應用余弦定理有,再由三角形內角性質及同角三角函數(shù)平方關系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當且僅當時等號成立,又,當且僅當時等號成立.故答案為:16、【解析】,,利用橢圓的定義、結合余弦定理、已知條件,可得,解得,從而可得結果【詳解】橢圓,可得,設,,可得,化簡可得:,,故答案為【點睛】本題主要考查橢圓的定義以及余弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程18、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.19、(1);(2).【解析】(1)設等差數(shù)列的公差為,根據(jù)題意可得出關于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.20、(1),(2)【解析】(1)根據(jù)已知遞推關系式再寫一式,然后兩式相減,由等差數(shù)列、等比數(shù)列的定義即可求解;(2)根據(jù)已知遞推關系式再寫一式,然后兩式相減,求出,最后利用錯位相減法即可得答案.【小問1詳解】解:因為,,所以,,得,所以是以2為首項2為公差的等差數(shù)列,是以1為首項2為公差的等差數(shù)列,所以,,所以;因為,所以,又由得,所以是以2為首項2為公比的等比數(shù)列,所以.【小問2詳解】解:當時,,當時,,得,即,記,則,,則.21、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關系即可判斷結果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建設工程設計合同范本
- 2024年期刊雜志印刷合同3篇
- 季節(jié)性維修區(qū)租賃合約
- 2024年農(nóng)業(yè)薄膜行業(yè)標準化體系建設與推廣合同3篇
- 潞安職業(yè)技術學院《鐵路旅客運輸課程設計》2023-2024學年第一學期期末試卷
- 農(nóng)村垂釣中心建設合同協(xié)議書
- 休閑農(nóng)業(yè)生態(tài)園建設合同
- 2024年外籍教師實習指導合同3篇
- 2024全新城市綜合體房屋出租與店面商業(yè)地產(chǎn)租賃合同范本2篇
- 2025項目工程建設招標投標合同
- DZ∕T 0214-2020 礦產(chǎn)地質勘查規(guī)范 銅、鉛、鋅、銀、鎳、鉬(正式版)
- 《廬山的云霧》課件
- 骨科進修匯報課件
- 人教版五年級美術學科試卷(附帶答案和考察要點解說)
- 同意降薪協(xié)議書
- MOOC 信號與系統(tǒng)-南京郵電大學 中國大學慕課答案
- 尋釁滋事罪探究
- 國開2024年《機械設計基礎》形考任務1-4試題
- (2024年)共青團光輝歷史
- 加油站百日攻堅行動實施方案
- 交通中國智慧樹知到期末考試答案2024年
評論
0/150
提交評論