2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省常州市常州中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.不等式的解集為()A. B.C.或 D.或2.120°的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB.已知,,,則CD的長(zhǎng)為()A. B.C. D.3.已知直線在兩個(gè)坐標(biāo)軸上的截距之和為7,則實(shí)數(shù)m的值為()A.2 B.3C.4 D.54.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.5.函數(shù)的遞增區(qū)間是()A. B.和C. D.和6.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設(shè),直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.若平面的一個(gè)法向量為,點(diǎn),,,,到平面的距離為()A.1 B.2C.3 D.49.下列命題中正確的個(gè)數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對(duì)于任意非零空間向量,,若,則A.1 B.2C.3 D.410.日常飲用水通常都是經(jīng)過(guò)凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.11.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項(xiàng)和取得最大值時(shí),的值為()A.12 B.13C.12或13 D.13或1412.已知,若,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程為_(kāi)______.14.在空間直角坐標(biāo)系Oxyz中,點(diǎn)在x,y,z軸上的射影分別為A,B,C,則四面體PABC的體積為_(kāi)_____________.15.九連環(huán)是中國(guó)的一種古老智力游對(duì),它用九個(gè)圓環(huán)相連成串,環(huán)環(huán)相扣,以解開(kāi)為勝,趣味無(wú)窮.中國(guó)的末代皇帝溥儀(1906-1967)也曾有一個(gè)精美的由九個(gè)翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個(gè)圓環(huán),用表示按照某種規(guī)則解下個(gè)圓環(huán)所需的銀和翠玉制九連環(huán)最少移動(dòng)次數(shù),且數(shù)列滿足,,則___________.16.設(shè)等差數(shù)列的前項(xiàng)和為,且,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,滿足_______請(qǐng)?jiān)冖?;②,;③三個(gè)條件中任選一個(gè),補(bǔ)充在上面的橫線上,完成上述問(wèn)題.注:若選擇不同的條件分別解答,則按第一個(gè)解答計(jì)分(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和18.(12分)某企業(yè)搜集了某產(chǎn)品的投人成本x(單位:萬(wàn)元)與銷售收入y(單位:萬(wàn)元)的六組數(shù)據(jù),并將其繪制成如圖所示的散點(diǎn)圖.根據(jù)散點(diǎn)圖可以看出,y與x之間是線性相關(guān)的.(1)試用最小二乘法求出y關(guān)于x的線性回歸方程;(2)若投入成本不高于10萬(wàn)元,則可以根據(jù)(1)中的回歸方程估計(jì)產(chǎn)品銷售收入;若投入成本高于10萬(wàn)元,投入成本x(單位:萬(wàn)元)與銷售收入y(單位:萬(wàn)元)之間的關(guān)系式為.若該企業(yè)要追求更高的毛利率(毛利率),試問(wèn)該企業(yè)對(duì)該產(chǎn)品的投入成本選擇收人7萬(wàn)元更好,還是選擇12萬(wàn)元更好?說(shuō)明你的理由.參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.參考數(shù)據(jù):.19.(12分)已知等差數(shù)列滿足,前7項(xiàng)和為(Ⅰ)求的通項(xiàng)公式(Ⅱ)設(shè)數(shù)列滿足,求的前項(xiàng)和.20.(12分)已知等差數(shù)列前n項(xiàng)和為,,,若對(duì)任意的正整數(shù)n成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,在直三棱柱中,,,D為的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點(diǎn),求與所成的角22.(10分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點(diǎn),求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A2、B【解析】由,把展開(kāi)整理求解【詳解】由已知可得:,,,,=41,∴.故選:B3、C【解析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實(shí)數(shù)m的值.【詳解】當(dāng)時(shí),,故不合題意,故,,令得:,令得:,故,解得:.故選:C4、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D5、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因?yàn)榈亩x域?yàn)?,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.6、A【解析】因?yàn)橹本€和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因?yàn)椤爸本€和直線垂直,所以或.當(dāng)時(shí),直線和直線垂直;當(dāng)直線和直線垂直時(shí),不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A7、A【解析】由可求得實(shí)數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.8、B【解析】求出,點(diǎn)A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點(diǎn)到平面的距離:故選:B.9、C【解析】根據(jù)題意、空間向量基底的概念和共線的運(yùn)算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個(gè)基底,則與共線或與其中有一個(gè)為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個(gè)向量,存在唯一的實(shí)數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對(duì)于任意非零空間向量,,若,則存在一個(gè)實(shí)數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯(cuò)誤.故選:C10、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:11、C【解析】設(shè)等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項(xiàng)求得公差,再由等差數(shù)列前n項(xiàng)和公式求解.【詳解】設(shè)等差數(shù)列的公差為q,因?yàn)椋?,,成等比?shù)列,所以,解得,所以,所以當(dāng)12或13時(shí),取得最大值,故選:C12、C【解析】根據(jù)題意,由為原點(diǎn)到直線上點(diǎn)的距離的平方,再根據(jù)點(diǎn)到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點(diǎn)到直線上點(diǎn)的距離的平方,根據(jù)點(diǎn)到直線垂線段最短,可得,所有的取值范圍為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為14、2【解析】將物體放入長(zhǎng)方體中,切割處理求得體積.【詳解】如圖所示:四面體PABC可以看成以1,2,3為棱長(zhǎng)的長(zhǎng)方體切去四個(gè)全等的三棱錐,所以四面體PABC的體積為.故答案為:215、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時(shí),,所以,.故答案為:.16、【解析】根據(jù),利用等差數(shù)列前項(xiàng)和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項(xiàng)和為,且,,,解得,,,解得,故答案為:10三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)條件選擇見(jiàn)解析,;(2).【解析】(1)選①,可得出,由可求得數(shù)列的通項(xiàng)公式;選②,分析可知數(shù)列是公差為的等差數(shù)列,根據(jù)已知條件求出的值,利用等差數(shù)列的求和公式可求得數(shù)列的通項(xiàng)公式;選③,在等式中令可求得的值,即可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法可求得.【小問(wèn)1詳解】解:選①,因?yàn)?,則,則,當(dāng)時(shí),,也滿足,所以,對(duì)任意的,;選②,因?yàn)?,則數(shù)列是公差為的等差數(shù)列,所以,,解得,則;選③,對(duì)任意的,,則,可得,因此,.【小問(wèn)2詳解】解:因?yàn)?,因此?18、(1)(2)該企業(yè)對(duì)該產(chǎn)品的投入成本選擇收人12萬(wàn)元更好,理由見(jiàn)解析.【解析】(1)根據(jù)公式計(jì)算出和,求出線性回歸方程;(2)分別求出投入成本7萬(wàn)和12萬(wàn)時(shí)的毛利率,比較出大小即可得到答案.【小問(wèn)1詳解】,,,所以y關(guān)于x的線性回歸方程為;【小問(wèn)2詳解】該企業(yè)對(duì)該產(chǎn)品的投入成本選擇收人12萬(wàn)元更好,理由如下:當(dāng)時(shí),,此時(shí)毛利率為×100%≈34%;當(dāng)時(shí),,此時(shí)毛利率為=40%,因?yàn)?0%>34%,所以該企業(yè)對(duì)該產(chǎn)品的投入成本選擇收人12萬(wàn)元更好.19、(1)(2).【解析】(1)根據(jù)等差數(shù)列的求和公式可得,得,然后由已知可得公差,進(jìn)而求出通項(xiàng);(2)先明確=,為等差乘等比型通項(xiàng)故只需用錯(cuò)位相減法即可求得結(jié)論.解析:(Ⅰ)由,得因?yàn)樗裕á颍?0、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時(shí),取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開(kāi)口向上的拋物線,對(duì)稱軸為,所以當(dāng)或4時(shí),取得最小值,所以實(shí)數(shù)的取值范圍是.21、(1)證明見(jiàn)解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點(diǎn)坐標(biāo),進(jìn)而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標(biāo),根據(jù)線線角的向量求法,即可得答案.【小問(wèn)1詳解】連接,交于O,連接OD,則O為的中點(diǎn),在中,因?yàn)镺、D分別為、BC中點(diǎn),所以,又因?yàn)槠矫?,平面,所以平面【小?wèn)2詳解】由題意得,兩兩垂直,以B為原點(diǎn),為x,y,z軸正方向建系,如圖所示:設(shè),則,所以,則,,因?yàn)槠矫嬖谄矫鍭BC內(nèi),且平面ABC,所以即為平面的一個(gè)法向量,設(shè)平面的一個(gè)法向量為,則,所以,令,則,所以法向量,所以,由圖象可得平面與平面的夾角為銳角,所以平面與平面的夾角的余弦值為【小問(wèn)3詳解】由(2)可得,設(shè)與所成的角為,則,解得,所以與所成的角為22、(1)證明見(jiàn)解析(2)【解析】(1)通過(guò)構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過(guò)兩個(gè)面的法向量夾角的余弦值求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論