黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題_第1頁
黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題_第2頁
黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題_第3頁
黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題_第4頁
黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江綏化市一中2023年高三3月份網(wǎng)上考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,準(zhǔn)線為,,是拋物線上的兩個動點,且滿足,設(shè)線段的中點在上的投影為,則的最大值是()A. B. C. D.2.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,3.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.4.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.5.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④6.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.47.函數(shù)的對稱軸不可能為()A. B. C. D.8.已知函數(shù),若,則的取值范圍是()A. B. C. D.9.已知,則下列關(guān)系正確的是()A. B. C. D.10.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.11.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠(yuǎn)地點離地面的距離為()A. B.C. D.12.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為__________.14.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.15.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.16.記數(shù)列的前項和為,已知,且.若,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.18.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.19.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項和為,求證:.20.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.21.(12分)已知點到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點F的坐標(biāo);(Ⅱ)設(shè)點P關(guān)于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.22.(10分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質(zhì).【名師點晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時,常??紤]用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點到準(zhǔn)線的距離首先等于兩點到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關(guān)系.2、B【解析】

根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機(jī)變量滿足,,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.3、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.4、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當(dāng)時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時,實數(shù)的取值范圍是.故選D.5、D【解析】

因為,所以①不正確;因為,所以,,所以,所以函數(shù)的圖象是軸對稱圖形,②正確;易知函數(shù)的最小正周期為,因為函數(shù)的圖象關(guān)于直線對稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時,,且,令,得,可知函數(shù)在處取得極大值為,③正確;因為,所以,所以函數(shù)的最小值為,④正確.故選D.6、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.7、D【解析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當(dāng)時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.8、B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.9、A【解析】

首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.10、C【解析】

先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.11、A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點,遠(yuǎn)地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.12、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.14、【解析】

將不等式兩邊同時平方進(jìn)行變形,然后得到對應(yīng)不等式組,對的取值進(jìn)行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當(dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.15、【解析】

基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時,,數(shù)列單調(diào)遞減,而,,,故,即實數(shù)的取值范圍為.故答案為:.【點睛】本題考查由遞推公式求數(shù)列的通項公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(為參數(shù));(2).【解析】

(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標(biāo)方程求解三角形面積的最值問題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.18、(1);(2)①;②詳見解析.【解析】

(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實數(shù)的值為.(2)①因為函數(shù)在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當(dāng)時,若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個極值點,且.所以,實數(shù)的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時,,在上單調(diào)遞減;當(dāng)時,,在上單調(diào)遞增,所以當(dāng)時,,又,,所以,即,故得證.【點睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點個數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.19、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項,1為公差的等差數(shù)列,,,問題轉(zhuǎn)化為證明:,通過換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當(dāng)時,f′(x)<2,當(dāng)時,f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因為x≥2,故,(?。┊?dāng)a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時,g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項,1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因為,所以,故.法二:?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時,令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點:1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項公式;4、數(shù)列的前項和;5、不等式的證明.20、(1)見解析(2)【解析】

(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當(dāng)即時,,,此時,在上單調(diào)遞增;當(dāng)即時,時,,在上單調(diào)遞減;時,,在上單調(diào)遞增;當(dāng)即時,,,此時,在上單調(diào)遞減;(2)當(dāng)時,因為在上單調(diào)遞增,所以的最小值為,所以當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因為,所以,.所以,所以.當(dāng)時,在上單調(diào)遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導(dǎo)數(shù)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論