一種基于NSCT與GoogLeNet的多傳感器圖像融合算法(英文)_第1頁(yè)
一種基于NSCT與GoogLeNet的多傳感器圖像融合算法(英文)_第2頁(yè)
一種基于NSCT與GoogLeNet的多傳感器圖像融合算法(英文)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一種基于NSCT與GoogLeNet的多傳感器圖像融合算法(英文)

Abstract

Inrecentyears,therehasbeenagrowinginterestinthedevelopmentofmulti-sensorimagefusiontechnology.Theaimofthistechnologyistocombineinformationfromdifferentsensorstocreateanenhancedimagethatismoreinformativeandvisuallypleasing.Inthispaper,weproposeanewmulti-sensorimagefusionalgorithmbasedontheNon-SubsampledContourletTransform(NSCT)andtheGoogLeNetmodel.TheproposedalgorithmfirstextractsthefeaturesoftheinputimagesbyusingtheGoogLeNetmodel.Then,theNSCTisusedtofusethefeaturesextractedfromdifferentsensors.Theresultsdemonstratethattheproposedalgorithmoutperformsotherstate-of-the-artalgorithmsintermsofobjectiveandsubjectiveimagequalitymeasures.

Introduction

Multi-sensorimagefusionisbecomingincreasinglypopularinvariousfieldssuchasremotesensing,surveillance,andmedicalimaging.Themainaimofmulti-sensorimagefusionistocombineinformationfromdifferentsensorstocreateanenhancedimagethatismoreinformativeandvisuallypleasing.Thegoalistoproduceanimagethatprovidesabetterrepresentationofthescenethananyoftheindividualsensorimages.

Thereareseveralchallengesinmulti-sensorimagefusion,includingtheselectionoftheappropriatetransformforfeatureextraction,theselectionoffusionmethods,andtheevaluationoftheresults.Inrecentyears,theuseofdeeplearningmodelshasbecomeincreasinglypopularinfeatureextractionandfusion.

Inthispaper,weproposeanewmulti-sensorimagefusionalgorithmbasedontheNon-SubsampledContourletTransform(NSCT)andtheGoogLeNetmodel.Therestofthispaperisorganizedasfollows.Section2discussesrelatedworkinmulti-sensorimagefusion.Section3presentstheproposedalgorithm.Section4presentstheexperimentalresultsandcomparisonwithexistingalgorithms.Finally,Section5concludesthispaper.

RelatedWork

Thepastfewyearshaveseenmanydevelopmentsinmulti-sensorimagefusion.Varioustransform-basedanddeeplearning-basedalgorithmshavebeenproposed.Someofthepopulartransform-basedalgorithmsincludeWaveletTransform(WT),StationaryWaveletTransform(SWT),ContourletTransform(CT),andNon-SubsampledContourletTransform(NSCT).Thesealgorithmshavebeenusedinconjunctionwithtraditionalfusionmethodssuchasmaximum,minimum,andaverage.

Deeplearning-basedalgorithms,primarilyusingConvolutionalNeuralNetworks(CNN),havealsobeenproposedformulti-sensorimagefusion.TheuseofCNN-basedmodelshasshownconsiderableimprovementovertraditionaltransform-basedalgorithms.However,deeplearning-basedmethodsrequirealargedatasetandsignificantcomputationalresources.

ProposedAlgorithm

TheproposedalgorithmusestheGoogLeNetmodelforfeatureextractionandtheNSCTforfusion.TheGoogLeNetmodelisadeeplearningmodeldevelopedbyGoogleforimageclassification.Ithasshownremarkableperformanceinmanyimageclassificationtasks.Weusethepre-trainedGoogLeNetmodel,whichhasbeentrainedontheImageNetdataset,forfeatureextraction.

Intheproposedalgorithm,wefirstextractthefeaturesoftheinputimagesusingthepre-trainedGoogLeNetmodel.TheGoogLeNetmodelextractshigh-levelfeaturesfromtheinputimagesandreducesthedimensionofthefeaturespace.Theextractedfeaturesarethenresizedtothesamesizeastheoriginalimages.

Next,weusetheNSCTtofusethefeaturesextractedfromdifferentsensors.TheNSCTisasecond-generationmultiscaletransformthathasbeenshowntoprovidebetterperformancethanothertransform-basedmethods.TheNSCThasseveraladvantages,includingmultiscale,multidirectionalandshift-invariantproperties.

Intheproposedalgorithm,weapplytheNSCTtothefeaturesextractedfromdifferentsensors.TheNSCTcoefficientsofthefeaturesarecombinedbyusingthelocalenergycriteriontoobtainthefusedcoefficients.ThefusedcoefficientsarethenreconstructedusinginverseNSCTtoobtainthefinalfusedimage.

ExperimentalResults

Toevaluatetheproposedalgorithm,weconductedexperimentsonseveraldatasets,includingtheinfraredandvisiblelightsensordataset.

Wecomparedtheproposedalgorithmwithseveralstate-of-the-artalgorithms,includingtheSWT,CT,andCNN-basedalgorithms.

Toevaluatetheobjectivequalityofthefusedimages,weusedseveralevaluationmetrics,includingthePeakSignal-to-NoiseRatio(PSNR),StructuralSimilarityIndex(SSIM),andFusionQualityIndex(FQI).Theresultsdemonstratethattheproposedalgorithmoutperformsotherstate-of-the-artalgorithmsintermsofobjectivequalitymetrics.

Toevaluatethesubjectivequalityofthefusedimages,weconductedsubjectiveexperimentswithagroupofhumanobservers.Theobserverswereaskedtoratethequalityofthefusedimagesonafive-pointscale.Theresultsdemonstratethattheproposedalgorithmoutperformsotherstate-of-the-artalgorithmsintermsofsubjectivequality.

Conclusion

Inthispaper,weproposedanewmulti-sensorimagefusionalgorithmbasedontheNon-SubsampledContourletTransform(NSCT)andtheGoogLeNetmodel.TheproposedalgorithmfirstextractsthefeaturesoftheinputimagesusingtheGoogLeNetmodel.Then,theNSCTisusedtofusethefeaturesextractedfr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論