河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析_第1頁
河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析_第2頁
河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析_第3頁
河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析_第4頁
河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省秦皇島市孟臺子中學(xué)2022年高三數(shù)學(xué)文模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知且,則的值為A.

B.

C.

D.參考答案:D略2.設(shè)是虛數(shù)單位,則等于A. B. C. D.參考答案:D略3.一個空間幾何體的三視圖如圖,則該幾何體的體積為A.

B.0C.

D.參考答案:D4.設(shè)為正數(shù),則的最小值是(

)。A、6

B、7

C、8

D、9參考答案:D略5.已知,,則(

)A.

B.

C.

D.參考答案:D略6.計算:等于

A.1+i

B.1—i

C.—1+i

D.—1—i參考答案:A7.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},則集合(?UN)∩M=()A.{2} B.{1,3} C.{2,5} D.{4,5}參考答案:D【考點】1H:交、并、補(bǔ)集的混合運算.【分析】求出N的補(bǔ)集,然后求解交集即可.【解答】解:全集U={1,2,3,4,5},N={2,3},則集合?UN={1,4,5},M={3,4,5},集合(?UN)∩M={4,5}.故選:D.8.函數(shù)的圖象可由函數(shù)的圖象

(A)向左平移個長度單位

(B)向右平移個長度單位(C)向左平移個長度單位

(D)向右平移個長度單位參考答案:C略9.定義在R上的函數(shù)f(x)在(-∞,2)上是增函數(shù),且f(x+2)的圖象關(guān)于軸對稱,則

A.f(-1)<f(3)B.f(0)>f(3)

C.f(-1)=f(3)

D.f(0)=f(3)參考答案:A10.將函數(shù)的圖像上所有的點向右平移個單位長度,再把圖像上各點的橫坐標(biāo)擴(kuò)大到原來的2倍(縱坐標(biāo)不變),則所得圖像的解析式為(

)A. B.C. D.參考答案:A【分析】根據(jù)三角函數(shù)的左右平移和伸縮變換原則變化函數(shù)解析式即可得到結(jié)果.【詳解】向右平移個單位長度得:橫坐標(biāo)擴(kuò)大到原來的倍得:本題正確選項:【點睛】本題考查三角函數(shù)圖象變換中的左右平移變換和伸縮變換,關(guān)鍵是明確兩種變換均是針對于的變化.二、填空題:本大題共7小題,每小題4分,共28分11.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學(xué)生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為___________。參考答案:16012.已知是圓為圓心)上一動點,線段AB的垂直平分線交BF于P,則動點P的軌跡方程為

.參考答案:答案:13.不等式的解集為_____________.參考答案:14.已知數(shù)列{an}的前n項和Sn=n3,則a6+a7+a8+a9等于

.參考答案:60415.已知函數(shù),給出下列四個命題:①函數(shù)是周期函數(shù).②函數(shù)既有最大值又有最小值.③函數(shù)的圖像有對稱軸.④對于任意,函數(shù)的導(dǎo)函數(shù).其中真命題的序號是

.(請寫出所有真命題的序號)參考答案:②③16.當(dāng)x>1時,的最小值為__________.參考答案:略17.(幾何證明選講選做題)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為_______。參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù)f(x)=x3﹣﹣1的導(dǎo)函數(shù)為f′(x),g(x)=emx+f′(x).(Ⅰ)若f(2)=11,求曲線y=f(x)在點(1,f(1))處的切線方程;(Ⅱ)證明函數(shù)g(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;(Ⅲ)若對任意x1,x2∈[﹣1,1],都有|g(x1)﹣g(x2)|≤e+1,求m的取值范圍.參考答案:【考點】利用導(dǎo)數(shù)研究曲線上某點切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用.【專題】綜合題;轉(zhuǎn)化思想;分類法;函數(shù)的性質(zhì)及應(yīng)用;導(dǎo)數(shù)的綜合應(yīng)用.【分析】(Ⅰ)由f(2)=11,求得m=﹣2,求出f(x)的導(dǎo)數(shù),求得切線的斜率和切點,即可得到所求切線的方程;(Ⅱ)利用g′(x)≥0說明函數(shù)為增函數(shù),利用g′(x)≤0說明函數(shù)為減函數(shù).注意參數(shù)m的討論;(Ⅲ)由(Ⅱ)知,對任意的m,g(x)在[﹣1,0]單調(diào)遞減,在[0,1]單調(diào)遞增,則恒成立問題轉(zhuǎn)化為最大值和最小值問題.從而求得m的取值范圍.【解答】解:(Ⅰ)函數(shù)f(x)=x3﹣﹣1的導(dǎo)函數(shù)為f′(x)=3x2﹣mx,f(2)=11,可得8﹣2m﹣1=11,解得m=﹣2,即f(x)=x3+x2﹣1導(dǎo)數(shù)為f′(x)=3x2+2x,在點(1,f(1))處的切線斜率為5,切點為(1,1),則在點(1,f(1))處的切線方程為y﹣1=5(x﹣1),即為5x﹣y﹣4=0;(Ⅱ)證明:g(x)=emx+f′(x)=emx+3x2﹣mx.g′(x)=m(emx﹣1)+6x.若m≥0,則當(dāng)x∈(﹣∞,0)時,emx﹣1≤0,g′(x)<0;當(dāng)x∈(0,+∞)時,emx﹣1≥0,g′(x)>0.若m<0,則當(dāng)x∈(﹣∞,0)時,emx﹣1>0,g′(x)<0;當(dāng)x∈(0,+∞)時,emx﹣1<0,g′(x)>0.所以,g(x)在(﹣∞,0)時單調(diào)遞減,在(0,+∞)單調(diào)遞增;(Ⅲ)由(1)知,對任意的m,g(x)在[﹣1,0]單調(diào)遞減,在[0,1]單調(diào)遞增,故g(x)在x=0處取得最小值.所以對于任意x1,x2∈[﹣1,1],|g(x1)﹣g(x2)|≤e+1的充要條件是,即,即,設(shè)函數(shù)h(t)=et﹣t﹣e+1,則h′(t)=et﹣1.當(dāng)t<0時,h′(t)<0;當(dāng)t>0時,h′(t)>0.故h(t)在(﹣∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增.又h(1)=0,h(﹣1)=e﹣1+2﹣e<0,故當(dāng)t∈[﹣1,1]時,h(t)≤0.當(dāng)m∈[﹣1,1]時,h(m)≤0,h(﹣m)≤0,即合式成立;當(dāng)m>1時,由h(t)的單調(diào)性,h(m)>0,即em﹣m>e﹣1.當(dāng)m<﹣1時,h(﹣m)>0,即e﹣m+m>e﹣1.綜上,m的取值范圍是[﹣1,1].【點評】本題主要考查導(dǎo)數(shù)在求單調(diào)函數(shù)中的應(yīng)用和恒成立在求參數(shù)中的應(yīng)用.屬于難題.19.如圖四棱錐P-ABCD中,底面ABCD是正方形,PD底面ABCD,點E在棱PB上。(1)求證:平面AEC平面PDB。(2)若E是PB的中點,且AE與平面PBD所成的角為45時,求二面角B-AE-D大小的余弦值。參考答案:(1)證明:,又是正方形,.,又。(2),是AE在面PBD上的射影,是AE與面PBD所成的角,.令,.以D為原點,DA,DB,DC分別為x,y,z軸建立空間直角坐標(biāo)系,易求得面BAE的一個法向量為,求得面DAE的一個法向量為,,二面角大小余弦值為。略20.已知函數(shù),且.

(Ⅰ)求的解析式;

(Ⅱ)若對于任意,都有,求的最小值;

(Ⅲ)證明:函數(shù)的圖象在直線的下方.參考答案:【知識點】導(dǎo)數(shù)的綜合運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性【試題解析】(Ⅰ)對求導(dǎo),得,

所以,解得,

所以.

(Ⅱ)由,得,

因為,

所以對于任意,都有.

設(shè),則

,解得.

當(dāng)x變化時,與的變化情況如下表:

所以當(dāng)時,.

因為對于任意,都有成立,

所以

所以的最小值為.

(Ⅲ)證明:“函數(shù)的圖象在直線的下方”

等價于“”,

即要證,

所以只要證.

由(Ⅱ),得,即(當(dāng)且僅當(dāng)時等號成立).

所以只要證明當(dāng)時,即可.

設(shè),

所以,

令,解得.

由,得,所以在上為增函數(shù).

所以,即.

所以.

故函數(shù)的圖象在直線的下方.21.設(shè)數(shù)列、滿足,,,.(1)證明:,();(2)設(shè),求數(shù)列的通項公式;(3)設(shè)數(shù)列的前項和為,數(shù)列的前項和為,數(shù)列的前項和為,求證:.參考答案:(1),兩式相乘得,為常數(shù)列,;(2分);(若,則,從而可得為常數(shù)列與矛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論