應(yīng)力與應(yīng)變間的關(guān)系_第1頁
應(yīng)力與應(yīng)變間的關(guān)系_第2頁
應(yīng)力與應(yīng)變間的關(guān)系_第3頁
應(yīng)力與應(yīng)變間的關(guān)系_第4頁
應(yīng)力與應(yīng)變間的關(guān)系_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

應(yīng)力與應(yīng)變間的關(guān)系第1頁,課件共30頁,創(chuàng)作于2023年2月二、純剪切應(yīng)力狀態(tài)下應(yīng)力與應(yīng)變的關(guān)系或G為剪切彈性模量,單位為N/m2.第2頁,課件共30頁,創(chuàng)作于2023年2月(1)符號規(guī)定xyzo上面右側(cè)面前面xyzxyyzzx

xyzxyyzzx

1、各向同性材料的廣義胡克定律(a)三個正應(yīng)力分量:拉應(yīng)力為正壓應(yīng)力為負(fù)。三、復(fù)雜應(yīng)力狀態(tài)下應(yīng)力與應(yīng)變的關(guān)系第3頁,課件共30頁,創(chuàng)作于2023年2月xyzo上面右側(cè)面前面(b)三個剪應(yīng)力分量:

若正面(外法線與坐標(biāo)軸正向一致的平面)上剪應(yīng)力矢的指向與坐標(biāo)軸正向一致,或負(fù)面(外法線與坐標(biāo)軸負(fù)向一致的平面)上剪應(yīng)力矢的指向與坐標(biāo)軸負(fù)向一致,則該剪應(yīng)力為正,反之為負(fù)。圖中表示的均為正方向第4頁,課件共30頁,創(chuàng)作于2023年2月

線應(yīng)變:以伸長為正,縮短為負(fù)。

剪應(yīng)變:使直角減小者為正,

增大者為負(fù)。

xOy

yOzzox。xyzO上面右側(cè)面前面第5頁,課件共30頁,創(chuàng)作于2023年2月在xyz分別單獨(dú)存在時,x方向的線應(yīng)變x依次為:2、各向同性材料的廣義胡克定律(1)線應(yīng)變的推導(dǎo)第6頁,課件共30頁,創(chuàng)作于2023年2月在xyz同時存在時,x方向的線應(yīng)變x為在xyz同時存在時,y,z方向的線應(yīng)變?yōu)榈?頁,課件共30頁,創(chuàng)作于2023年2月剪應(yīng)變xy,yz,zx與剪應(yīng)力xy,yz,zx之間的關(guān)系為公式的適用范圍:

在線彈性范圍內(nèi),小變形條件下,

各向同性材料。(2)剪應(yīng)變的推導(dǎo)第8頁,課件共30頁,創(chuàng)作于2023年2月公式的適用范圍:

在線彈性范圍內(nèi),小變形條件下,各向同性材料。第9頁,課件共30頁,創(chuàng)作于2023年2月3、特例(1)平面應(yīng)力狀態(tài)下(假設(shè)Z=0)第10頁,課件共30頁,創(chuàng)作于2023年2月(2)廣義胡克定律用主應(yīng)力和主應(yīng)變表示時三向應(yīng)力狀態(tài)下:(7-7-6)第11頁,課件共30頁,創(chuàng)作于2023年2月平面應(yīng)力狀態(tài)下設(shè)3=0,則第12頁,課件共30頁,創(chuàng)作于2023年2月材料的三個彈性常數(shù)E,G,間存在如下關(guān)系:第13頁,課件共30頁,創(chuàng)作于2023年2月例題7-6已知一受力構(gòu)件自由表面上的兩主應(yīng)變數(shù)值為。構(gòu)件材料為Q235鋼,其彈性模量E=210GPa,泊松比=0。3。求該點(diǎn)處的主應(yīng)力值,并求該點(diǎn)處另一主應(yīng)變2的數(shù)值和方向。第14頁,課件共30頁,創(chuàng)作于2023年2月解:一,一對應(yīng)。由于構(gòu)件自由表面,所以主應(yīng)力2=0。所以該點(diǎn)為平面應(yīng)力狀態(tài)。由解得第15頁,課件共30頁,創(chuàng)作于2023年2月該點(diǎn)處另一主應(yīng)變2的數(shù)值為2是縮短的主應(yīng)變,其方向必與1和3垂直,即沿構(gòu)件的外法線方向。第16頁,課件共30頁,創(chuàng)作于2023年2月四、各向同性材料的體積應(yīng)變(2)各向同性材料在空間應(yīng)力狀態(tài)下的體積應(yīng)變(1)概念:構(gòu)件每單位體積的體積變化,稱為體積應(yīng)變用θ表示。

第17頁,課件共30頁,創(chuàng)作于2023年2月公式推導(dǎo)

設(shè)單元體的三對平面為主平面,其三個邊長為dx,dy,dz變形后的邊長分別為dx(1+,dy(1+2,dz(1+3,因此變形后單元體的體積為:213dxdydz第18頁,課件共30頁,創(chuàng)作于2023年2月體積應(yīng)變?yōu)榈?9頁,課件共30頁,創(chuàng)作于2023年2月將廣義胡克定律代入得第20頁,課件共30頁,創(chuàng)作于2023年2月在最一般的空間應(yīng)力狀態(tài)下,材料的體積應(yīng)變只與三個線應(yīng)變x,y,z有關(guān)。仿照上述推導(dǎo)有在任意形式的應(yīng)力狀態(tài)下,

各向同性材料內(nèi)一點(diǎn)處的體積應(yīng)變與通過該點(diǎn)的任意三個相互垂直的平面上的正應(yīng)力之和成正比,而與剪應(yīng)力無關(guān)。第21頁,課件共30頁,創(chuàng)作于2023年2月特例在平面純剪切應(yīng)力狀態(tài)下:代入得可見,材料的體積應(yīng)變等于零。即在小變形下,剪應(yīng)力不引起各向同性材料的體積改變。第22頁,課件共30頁,創(chuàng)作于2023年2月例題7-7

邊長a=0.1m的銅立方塊,無間隙地放入體積較大,變形可略去不計的鋼凹槽中,如圖所示。已知銅的彈性模量E=100GPa,泊松比=0.34,當(dāng)受到P=300kN的均布壓力作用時,求該銅塊的主應(yīng)力.體積應(yīng)變以及最大剪應(yīng)力。aaaPyxz第23頁,課件共30頁,創(chuàng)作于2023年2月解:銅塊上截面上的壓應(yīng)力為yyZxzx(b)由第24頁,課件共30頁,創(chuàng)作于2023年2月解得銅塊的主應(yīng)力為第25頁,課件共30頁,創(chuàng)作于2023年2月體積應(yīng)變和最大剪應(yīng)力分別為第26頁,課件共30頁,創(chuàng)作于2023年2月例題9-8

壁厚t=10mm,外徑D=60mm的薄壁圓筒,在表面上k點(diǎn)處與其軸線成45°和135°角即x,y

兩方向分別貼上應(yīng)變片,然后在圓筒兩端作用矩為m

的扭轉(zhuǎn)力偶,如圖所示已知圓筒材料的彈性模量為E=200GPa和=0.3,若該圓筒的變形在彈性范圍內(nèi),且max=80MPa,試求k點(diǎn)處的線應(yīng)變x,y以及變形后的筒壁厚度。Dtymkx第27頁,課件共30頁,創(chuàng)作于2023年2月Dtxymkxyk可求得:解:

從圓筒表面k點(diǎn)處取出單元體,其各面上的應(yīng)力分量如圖所示第28頁,課件共30頁,創(chuàng)作于2023年2月k點(diǎn)處的線應(yīng)變x,y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論