版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若滿足條件的三角形ABC有兩個(gè),那么a的取值范圍是()A. B. C. D.2.已知點(diǎn)是直線上一動(dòng)點(diǎn),與是圓的兩條切線,為切點(diǎn),則四邊形的最小面積為()A. B. C. D.3.已知是球O的球面上四點(diǎn),面ABC,,則該球的半徑為()A. B. C. D.4.設(shè)是△所在平面內(nèi)的一點(diǎn),且,則△與△的面積之比是()A. B. C. D.5.直線y=﹣x+1的傾斜角是()A.30° B.45° C.1356.若且,則下列不等式成立的是()A. B. C. D.7.函數(shù)的周期為()A. B. C. D.8.已知向量=(3,4),=(2,1),則向量與夾角的余弦值為()A. B. C. D.9.已知,,從射出的光線經(jīng)過直線反射后再射到直線上,最后經(jīng)直線反射后又回到點(diǎn),則光線所經(jīng)過的路程可以用對(duì)稱性轉(zhuǎn)化為一條線段,這條線段的長為()A. B.3 C. D.10.在各項(xiàng)均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項(xiàng)和為,則當(dāng)取最大值時(shí),n的值為()A.8 B.9 C.8或9 D.17二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,點(diǎn)M,N滿足,若,則x=________,y=________.12.若,則__________.13.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為______.14.在中,角所對(duì)邊長分別為,若,則的最小值為__________.15.已知一個(gè)幾何體的三視圖如圖所示,其中正視圖是等腰直角三角形,則該幾何體的體積為__________.16.在中,角所對(duì)的邊分別為.若,,則角的大小為____________________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知在直角三角形ABC中,,(如右圖所示)(Ⅰ)若以AC為軸,直角三角形ABC旋轉(zhuǎn)一周,試說明所得幾何體的結(jié)構(gòu)特征并求所得幾何體的表面積.(Ⅱ)一只螞蟻在問題(Ⅰ)形成的幾何體上從點(diǎn)B繞著幾何體的側(cè)面爬行一周回到點(diǎn)B,求螞蟻爬行的最短距離.18.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點(diǎn)在底面上的射影為棱的中點(diǎn),點(diǎn)在平面內(nèi)的射影為證明:為的中點(diǎn):求三棱錐的體積19.設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為,,,乙協(xié)會(huì)編號(hào)為,丙協(xié)會(huì)編號(hào)分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.(1)用所給編號(hào)列出所有可能抽取的結(jié)果;(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率.20.直線的方程為.(1)若在兩坐標(biāo)軸上的截距相等,求的值;(2)若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍.21.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的最大值與最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
利用正弦定理,用a表示出sinA,結(jié)合C的取值范圍,可知;根據(jù)存在兩個(gè)三角形的條件,即可求得a的取值范圍?!驹斀狻扛鶕?jù)正弦定理可知,代入可求得因?yàn)?,所以若滿足有兩個(gè)三角形ABC則所以所以選C【點(diǎn)睛】本題考查了正弦定理在解三角形中的簡單應(yīng)用,判斷三角形的個(gè)數(shù)情況,屬于基礎(chǔ)題。2、A【解析】
利用當(dāng)與直線垂直時(shí),取最小值,并利用點(diǎn)到直線的距離公式計(jì)算出的最小值,然后利用勾股定理計(jì)算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時(shí),、也取得最小值,顯然當(dāng)與直線垂直時(shí),取最小值,且該最小值為點(diǎn)到直線的距離,即,此時(shí),,四邊形面積的最小值為,故選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查切線長的計(jì)算以及四邊形的面積,本題在求解切線長的最小值時(shí),要抓住以下兩點(diǎn):(1)計(jì)算切線長應(yīng)利用勾股定理,即以點(diǎn)到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時(shí),點(diǎn)到圓心的距離也取到最小值.3、D【解析】
根據(jù)面,,得到三棱錐的三條側(cè)棱兩兩垂直,以三條側(cè)棱為棱長得到一個(gè)長方體,且長方體的各頂點(diǎn)都在該球上,長方體的對(duì)角線的長就是該球的直徑,從而得到答案?!驹斀狻棵?,三棱錐的三條側(cè)棱,,兩兩垂直,可以以三條側(cè)棱,,為棱長得到一個(gè)長方體,且長方體的各頂點(diǎn)都在該球上,長方體的對(duì)角線的長就是該球的直徑,即則該球的半徑為故答案選D【點(diǎn)睛】本題考查三棱錐外接球的半徑的求法,本題解題的關(guān)鍵是以三條側(cè)棱為棱長得到一個(gè)長方體,三棱錐的外接球,即為該長方體的外接球,利用長方體外接球的直徑為長對(duì)角線的長,屬于基礎(chǔ)題。4、B【解析】試題分析:依題意,得,設(shè)點(diǎn)到的距離為,所以與的面積之比是,故選B.考點(diǎn):三角形的面積.5、C【解析】
由直線方程可得直線的斜率,進(jìn)而可得傾斜角.【詳解】直線y=﹣x+1的斜率為﹣1,設(shè)傾斜角為α,則tanα=﹣1,∴α=135°故選:C.【點(diǎn)睛】本題考查直線的傾斜角和斜率的關(guān)系,屬基礎(chǔ)題.6、D【解析】
利用不等式的性質(zhì)對(duì)四個(gè)選項(xiàng)逐一判斷.【詳解】選項(xiàng)A:,符合,但不等式不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)B:當(dāng)符合已知條件,但零沒有倒數(shù),故不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)C:當(dāng)時(shí),不成立,故本選項(xiàng)是錯(cuò)誤的;選項(xiàng)D:因?yàn)椋愿鶕?jù)不等式的性質(zhì),由能推出,故本選項(xiàng)是正確的,因此本題選D.【點(diǎn)睛】本題考查了不等式的性質(zhì),結(jié)合不等式的性質(zhì),舉特例是解決這類問題的常見方法.7、D【解析】
利用二倍角公式以及輔助角公式將函數(shù)化為,再利用三角函數(shù)的周期公式即可求解.【詳解】,函數(shù)的最小正周期為.故選:D【點(diǎn)睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的最小正周期的求法,屬于基礎(chǔ)題.8、A【解析】
由向量的夾角公式計(jì)算.【詳解】由已知,,.∴.故選A.【點(diǎn)睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積公式是解題基礎(chǔ).9、A【解析】
根據(jù)題意,畫出示意圖,求出點(diǎn)的坐標(biāo),進(jìn)而利用兩點(diǎn)之間距離公式求解.【詳解】根據(jù)題意,作圖如下:已知直線AB的方程為:,則:點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為,則:,解得點(diǎn),同理可得點(diǎn)P關(guān)于直線OB的對(duì)稱點(diǎn)為:故光線的路程為.故選:A.【點(diǎn)睛】本題考查點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的求解、斜率的求解、以及兩點(diǎn)之間的距離,屬基礎(chǔ)題.10、C【解析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項(xiàng),公差為的等差數(shù)列∴數(shù)列的前項(xiàng)和為令當(dāng)時(shí),∴當(dāng)或9時(shí),取最大值.故選C點(diǎn)睛:(1)在解決等差數(shù)列、等比數(shù)列的運(yùn)算問題時(shí),有兩個(gè)處理思路:一是利用基本量將多元問題簡化為一元問題;二是利用等差數(shù)列、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問題的快捷方便的工具;(2)求等差數(shù)列的前項(xiàng)和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項(xiàng)和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項(xiàng)變號(hào)法:當(dāng)時(shí),滿足的項(xiàng)數(shù)使得取得最大值為;當(dāng)時(shí),滿足的項(xiàng)數(shù)使得取得最小值為.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】特殊化,不妨設(shè),利用坐標(biāo)法,以A為原點(diǎn),AB為軸,為軸,建立直角坐標(biāo)系,,,則,.考點(diǎn):本題考點(diǎn)為平面向量有關(guān)知識(shí)與計(jì)算,利用向量相等解題.12、;【解析】
易知的周期為,從而化簡求得.【詳解】的周期為,且,又,.故答案為:【點(diǎn)睛】本題考查了正弦型函數(shù)的周期以及利用周期求函數(shù)值,屬于基礎(chǔ)題.13、【解析】
利用空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征解答即可.【詳解】在空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)對(duì)應(yīng)互為相反數(shù),所以點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為.故答案為:【點(diǎn)睛】本題主要考查空間直角坐標(biāo)系中對(duì)稱點(diǎn)的特點(diǎn),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、【解析】
根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【點(diǎn)睛】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.15、【解析】
首先根據(jù)三視圖還原幾何體,再計(jì)算體積即可.【詳解】由三視圖知:該幾何體是以底面是直角三角形,高為的三棱錐,直觀圖如圖所示:.故答案為:【點(diǎn)睛】本題主要考查三視圖還原直觀圖,同時(shí)考查了錐體的體積計(jì)算,屬于簡單題.16、【解析】本題考查了三角恒等變換、已知三角函數(shù)值求角以及正弦定理,考查了同學(xué)們解決三角形問題的能力.由得,所以由正弦定理得,所以A=或(舍去)、三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)幾何體為以為半徑,高的圓錐,(Ⅱ)【解析】
(Ⅰ)若以為軸,直角三角形旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,由圓錐的表面積公式,即可求出結(jié)果.(Ⅱ)利用側(cè)面展開圖,要使螞蟻爬行的最短距離,則沿點(diǎn)B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點(diǎn)B到點(diǎn)的距離,代入數(shù)值,即可求出結(jié)果.【詳解】解:(Ⅰ)在直角三角形ABC中,由即,得,若以為軸旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,則,其表面積為.(Ⅱ)由問題(Ⅰ)的圓錐,要使螞蟻爬行的最短距離,則沿點(diǎn)B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點(diǎn)B到點(diǎn)的距離,,在中,由余弦定理得:【點(diǎn)睛】本題考查了圓錐的表面積以及側(cè)面展開圖的應(yīng)用,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.18、(1)詳見解析(2)【解析】
(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點(diǎn).(2)根據(jù),即求出即可.【詳解】(1)證明:因?yàn)槊?,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(diǎn)(2)由題意平面【點(diǎn)睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎(chǔ)題.19、(1)15種;(2);(3)【解析】
(1)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,利用列舉法即可得到所有可能的結(jié)果.(2利用列舉法得到“丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽”的基本事件的個(gè)數(shù),利用古典概型,即可求解;(3)由兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)有,,,,共4種,利用古典概型,即可求解.【詳解】(1)由題意,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,所有可能的結(jié)果為,,,,,,,,,,,,,,,共15種.(2)因?yàn)楸麉f(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽,所以編號(hào)為,的兩名運(yùn)動(dòng)員至少有一人被抽到,其結(jié)果為:設(shè)“丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽”為事件,,,,,,,,,,共9種,所以丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率.(3)兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)有,,,,共4種,參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率為.【點(diǎn)睛】本題主要考查了古典概型及其概率的計(jì)算問題,其中解答中準(zhǔn)確利用列舉法的基本事件的總數(shù),找出所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(1)0或2;(2).【解析】
(1)當(dāng)過坐標(biāo)原點(diǎn)時(shí),可求得滿足題意;當(dāng)不過坐標(biāo)原點(diǎn)時(shí),可根據(jù)直線截距式,利用截距相等構(gòu)造方程求得結(jié)果;(2)當(dāng)時(shí),可得直線不經(jīng)過第二象限;當(dāng)時(shí),結(jié)合函數(shù)圖象可知斜率為正,且在軸截距小于等于零,從而構(gòu)造不等式組求得結(jié)果.【詳解】(1)當(dāng)過坐標(biāo)原點(diǎn)時(shí),,解得:,滿足題意當(dāng)不過坐標(biāo)原點(diǎn)時(shí),即時(shí)若,即時(shí),,不符合題意若,即時(shí),方程可整理為:,解得:綜上所述:或(2)當(dāng),即時(shí),,不經(jīng)過第二象限,滿足題意當(dāng),即時(shí),方程可整理為:,解得:綜上所述:的取值范圍為:【點(diǎn)睛】本題考查直線方程的應(yīng)用,涉及到直線截距式方程、由圖象確定參數(shù)范圍等知識(shí);易錯(cuò)點(diǎn)是在截距相等時(shí),忽略經(jīng)過坐標(biāo)原點(diǎn)的情況,造成丟根.21、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】
(1)利用三角恒等變換,化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;(2)利用正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 32151.29-2024溫室氣體排放核算與報(bào)告要求第29部分:機(jī)械設(shè)備制造企業(yè)
- 2024-2025學(xué)年黑龍江省哈爾濱市哈工大附中高三(上)月考數(shù)學(xué)試卷(10月份)(含答案)
- 阜陽師范大學(xué)《裝飾圖案》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《大數(shù)據(jù)商務(wù)智能》2023-2024學(xué)年第一學(xué)期期末試卷
- 粵教版四年級(jí)科學(xué)下冊(cè)全冊(cè)教案
- 無錫市2024-2025學(xué)年六年級(jí)上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷一(有答案)
- 福建師范大學(xué)協(xié)和學(xué)院《現(xiàn)代教育技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《中國現(xiàn)當(dāng)代文學(xué)名家名作導(dǎo)讀》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《散打》2023-2024學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《工程及復(fù)合材料力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 3D打印技術(shù)及應(yīng)用 (課堂PPT)
- 《膜分離技術(shù)》PPT課件
- 精通版五年級(jí)英語上冊(cè)Unit4單元測試卷(含聽力材料及答案)
- (完整版)裝配式建筑監(jiān)理控制要點(diǎn)
- 特種材料之哈氏合金介紹
- 中俄跨界水體水質(zhì)聯(lián)合監(jiān)測方案
- 風(fēng)管計(jì)算規(guī)則
- 地震自救知識(shí)教學(xué)課件
- 汽車減振器的選型設(shè)計(jì)
- 國家開放大學(xué)電大《計(jì)算機(jī)應(yīng)用基礎(chǔ)本》終結(jié)性考試試題答案格式已排好任務(wù)一
- 臨床營養(yǎng)評(píng)價(jià)
評(píng)論
0/150
提交評(píng)論