版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,則在方向上的投影為()A. B. C. D.2.已知兩點,,直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.或3.在等比數(shù)列中,若,則()A.3 B. C.9 D.134.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.5.在三棱錐中,,二面角的大小為,則三棱錐的外接球的表面積為()A. B. C. D.6.在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為()A. B. C. D.7.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.8.在中,是邊上一點,,且,則的值為()A. B. C. D.9.在中,角的對邊分別為,若,則A.無解 B.有一解C.有兩解 D.解的個數(shù)無法確定10.中國古代的“禮”“樂”“射”“御”“書”“數(shù)”合稱“六藝”.某校國學(xué)社團準備于周六上午9點分別在6個教室開展這六門課程講座,每位同學(xué)只能選擇一門課程,則甲乙兩人至少有人選擇“禮”的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.12.某小區(qū)擬對如圖一直角△ABC區(qū)域進行改造,在三角形各邊上選一點連成等邊三角形,在其內(nèi)建造文化景觀.已知,則面積最小值為____13.設(shè)變量滿足條件,則的最小值為___________14.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________15.已知函數(shù),若,則__________.16.不等式的解集是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)減區(qū)間.(2)求函數(shù)的最大值并求取得最大值時的的取值集合.(3)若,求的值.18.已知函數(shù).(1)求函數(shù)在上的單調(diào)遞增區(qū)間;(2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.19.設(shè)全集為,集合,集合.(Ⅰ)求;(Ⅱ)若,求實數(shù)的取值范圍.20.已知的三個頂點,,,其外接圓為圓.(1)求圓的方程;(2)若直線過點,且被圓截得的弦長為,求直線的方程;(3)對于線段上的任意一點,若在以為圓心的圓上都存在不同的兩點,,使得點是線段的中點,求圓的半徑的取值范圍.21.已知公差不為的等差數(shù)列滿足.若,,成等比數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】在方向上的投影為,選A.2、D【解析】
作出示意圖,再結(jié)合兩點間的斜率公式,即可求得答案.【詳解】,,又直線過點且與線段相交,作圖如下:則由圖可知,直線的斜率的取值范圍是:或.故選:D【點睛】本題借直線與線段的交點問題,考查兩點間的斜率公式,考查理解辨析能力,屬于中檔題.3、A【解析】
根據(jù)等比數(shù)列性質(zhì)即可得解.【詳解】在等比數(shù)列中,,,所以,所以,.故選:A【點睛】此題考查等比數(shù)列的性質(zhì),根據(jù)性質(zhì)求數(shù)列中的項的關(guān)系,關(guān)鍵在于熟練掌握相關(guān)性質(zhì),準確計算.4、A【解析】
根據(jù)圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設(shè)圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關(guān)鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計算能力,屬于中等題.5、D【解析】
取AB中點F,SC中點E,設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為,由,在四邊形中,設(shè),外接球半徑為,則則可求,表面積可求【詳解】取AB中點F,SC中點E,連接SF,CF,因為則為二面角的平面角,即又設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為則面,由在四邊形中,設(shè),外接球半徑為,則則三棱錐的外接球的表面積為故選D【點睛】本題考查二面角,三棱錐的外接球,考查空間想象能力,考查正弦定理及運算求解能力,是中檔題6、A【解析】因為,若,則,,故選A.7、C【解析】
根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計算出的值.【詳解】因為的值域為,所以的最大值,所以的最小值,所以.故選:C.【點睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進行分析.8、D【解析】
根據(jù),用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應(yīng)用及向量的線性運算.9、C【解析】
求得,根據(jù),即可判定有兩解,得到答案.【詳解】由題意,因為,又由,且,所以有兩解.【點睛】本題主要考查了三角形解的個數(shù)的判定,以及正弦定理的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、D【解析】
甲乙兩人至少有人選擇“禮”的對立事件是甲乙兩人都不選擇“禮”,求出后者的概率即可【詳解】由題意,甲和乙不選擇“禮”的概率是,且相互獨立所以甲乙兩人都不選擇“禮”的概率是所以甲乙兩人至少有人選擇“禮”的概率是故選:D【點睛】當(dāng)遇到“至多”“至少”型題目時,一般用間接法求會比較簡單,即先求出此事件的對立事件的概率,然后即可得出原事件的概率.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.12、【解析】
設(shè),然后分別表示,利用正弦定理建立等式用表示,從而利用三角函數(shù)的性質(zhì)得到的最小值,從而得到面積的最小值.【詳解】因為,所以,顯然,,設(shè),則,且,則,所以,在中,由正弦定理可得:,求得,其中,則,因為,所以當(dāng)時,取得最大值1,則的最小值為,所以面積最小值為,【點睛】本題主要考查了利用三角函數(shù)求解實際問題的最值,涉及到正弦定理的應(yīng)用,屬于難題.對于這類型題,關(guān)鍵是能夠選取恰當(dāng)?shù)膮?shù)表示需求的量,從而建立相關(guān)的函數(shù),利用函數(shù)的性質(zhì)求解最值.13、-1【解析】
根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因為.根據(jù)當(dāng)直線縱截距最大時,取得最小值.由圖易得在處取得最小值.故答案為:【點睛】本題主要考查了線性規(guī)劃的基本運用,屬于基礎(chǔ)題.14、【解析】
根據(jù)題設(shè)條件,得到方程組,求得,即可得到答案.【詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【點睛】本題主要考查了等差數(shù)列的通項公式,以及等比中項的應(yīng)用,其中解答中熟練利用等差數(shù)列的通項公式和等比中項公式,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解析】
由三角函數(shù)的輔助角公式化簡,關(guān)鍵需得出輔助角的正切值,再由函數(shù)的最大值求解.【詳解】由三角函數(shù)的輔助公式得(其中),因為所以,所以,所以,,所以,故填:【點睛】本題考查三角函數(shù)的輔助角公式,屬于基礎(chǔ)題.16、【解析】
因為,且拋物線開口方向向上,所以,不等式的解集是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)最大值是2,取得最大值時的的取值集合是.(3)【解析】
(1)利用三角恒等變換化簡的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)的解析式以及正弦函數(shù)的最值,求得函數(shù)的最大值,以及取得最大值時的的取值集合;(3)根據(jù)題設(shè)條件求得,再利用二倍角的余弦公式求的值.【詳解】(1),令,解得,所以的單調(diào)遞減區(qū)間為;(2)由(1)知,故的最大值為2,此時,,解得,所以的最大值是2,取得最大值時的的取值集合是;(3),即,所以,所以.【點睛】本題主要考查三角函數(shù)的恒等變換,考查正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì)是答題關(guān)鍵,屬于中檔題.18、(1)單調(diào)遞增區(qū)間為;(2)見解析.【解析】
(1)利用二倍角的降冪公式以及輔助角公式可將函數(shù)的解析式化簡為,然后求出函數(shù)在上的單調(diào)遞增區(qū)間,與定義域取交集可得出答案;(2)利用三角函數(shù)圖象變換得出,解出不等式的解集,可得知對中的任意一個,每個區(qū)間內(nèi)至少有一個整數(shù)使得,從而得出結(jié)論.【詳解】(1).令,解得,所以,函數(shù)在上的單調(diào)遞增區(qū)間為,,因此,函數(shù)在上的單調(diào)遞增區(qū)間為;(2)將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象,由,對于中的任意一個,區(qū)間長度始終為,大于,每個區(qū)間至少含有一個整數(shù),因此,存在無窮多個互不相同的整數(shù),使得.【點睛】本題考查正弦型三角函數(shù)單調(diào)區(qū)間的求解,同時也考查了利用三角函數(shù)圖象變換求函數(shù)解析式,以及三角不等式整數(shù)解的個數(shù)問題,考查運算求解能力,屬于中等題.19、(Ⅰ)(Ⅱ)【解析】
(1)化簡集合,按并集的定義,即可求解;(2)得,結(jié)合數(shù)軸,確定集合端點位置,即可求解.【詳解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由題意知,∴,解得,∴實數(shù)的取值范圍是.【點睛】本題考查集合間的運算,考查集合的關(guān)系求參數(shù),屬于基礎(chǔ)題.20、(1)(2)或(3)【解析】
試題分析:(1)借助題設(shè)條件直接求解;(2)借助題設(shè)待定直線的斜率,再運用直線的點斜式方程求解;(3)借助題設(shè)建立關(guān)于的不等式,運用分析推證的方法進行求解.試題解析:(1)的面積為2;(2)線段的垂直平分線方程為,線段的垂直平分線方程為,所以外接圓圓心,半徑,圓的方程為,設(shè)圓心到直線的距離為,因為直線被圓截得的弦長為2,所以.當(dāng)直線垂直于軸時,顯然符合題意,即為所求;當(dāng)直線不垂直于軸時,設(shè)直線方程為,則,解得,綜上,直線的方程為或.(3)直線的方程為,設(shè),,因為點是線段的中點,所以,又,都在半徑為的圓上,所以因為關(guān)于,的方程組有解,即以為圓心,為半徑的圓與以為圓心,為半徑的圓有公共點,所以,又,所以對成立.而在上的值域為,所以且.又線段與圓無公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 購銷合同協(xié)議書范本的實踐經(jīng)驗總結(jié)
- 個人提供保險代理勞務(wù)合同
- 積極向上完成軍訓(xùn)
- 遲到保證書寫什么內(nèi)容
- 貨物采購合同權(quán)益
- 質(zhì)量保證書范例設(shè)計指南匯編
- 學(xué)生過失承諾
- 二手房屋買賣合同按揭貸款問題
- 技術(shù)開發(fā)協(xié)議書格式模板
- 消防設(shè)施安裝勞務(wù)合作
- 湖北省新中考語文現(xiàn)代文閱讀技巧講解與備考
- 幼兒園故事課件:《胸有成竹》
- (完整版)康復(fù)科管理制度
- 深度千分尺校準記錄表
- GB/T 10000-2023中國成年人人體尺寸
- 電工安全用具課件
- 北師大版四年級數(shù)學(xué)上冊《不確定性》評課稿
- 模板銷售合同模板
- 對越自衛(wèi)反擊戰(zhàn)專題培訓(xùn)課件
- 小學(xué)生簡筆畫社團活動記錄
- 出境竹木草制品公司原輔料采購驗收制度
評論
0/150
提交評論