版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
試卷第=page11頁,共=sectionpages33頁試卷第=page11頁,共=sectionpages33頁2023年新課標(biāo)全國Ⅰ卷數(shù)學(xué)真題學(xué)校:___________姓名:___________班級:___________考號:___________一、單選題1.已知集合,,則(
)A. B. C. D.2【答案】C【分析】方法一:由一元二次不等式的解法求出集合,即可根據(jù)交集的運(yùn)算解出.方法二:將集合中的元素逐個代入不等式驗(yàn)證,即可解出.【詳解】方法一:因?yàn)?,而,所以.故選:C.方法二:因?yàn)椋瑢⒋氩坏仁?,只有使不等式成立,所以.故選:C.2.已知,則(
)A. B. C.0 D.1【答案】A【分析】根據(jù)復(fù)數(shù)的除法運(yùn)算求出,再由共軛復(fù)數(shù)的概念得到,從而解出.【詳解】因?yàn)?,所以,即.故選:A.3.已知向量,若,則(
)A. B.C. D.【答案】D【分析】根據(jù)向量的坐標(biāo)運(yùn)算求出,,再根據(jù)向量垂直的坐標(biāo)表示即可求出.【詳解】因?yàn)?,所以,,由可得,,即,整理得:.故選:D.4.設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是(
)A. B.C. D.【答案】D【分析】利用指數(shù)型復(fù)合函數(shù)單調(diào)性,判斷列式計算作答.【詳解】函數(shù)在R上單調(diào)遞增,而函數(shù)在區(qū)間上單調(diào)遞減,則有函數(shù)在區(qū)間上單調(diào)遞減,因此,解得,所以的取值范圍是.故選:D5.設(shè)橢圓的離心率分別為.若,則(
)A. B. C. D.【答案】A【分析】根據(jù)給定的橢圓方程,結(jié)合離心率的意義列式計算作答.【詳解】由,得,因此,而,所以.故選:A6.過點(diǎn)與圓相切的兩條直線的夾角為,則(
)A.1 B. C. D.【答案】B【分析】方法一:根據(jù)切線的性質(zhì)求切線長,結(jié)合倍角公式運(yùn)算求解;方法二:根據(jù)切線的性質(zhì)求切線長,結(jié)合余弦定理運(yùn)算求解;方法三:根據(jù)切線結(jié)合點(diǎn)到直線的距離公式可得,利用韋達(dá)定理結(jié)合夾角公式運(yùn)算求解.【詳解】方法一:因?yàn)?,即,可得圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,因?yàn)?,則,可得,則,,即為鈍角,所以;法二:圓的圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,連接,可得,則,因?yàn)榍?,則,即,解得,即為鈍角,則,且為銳角,所以;方法三:圓的圓心,半徑,若切線斜率不存在,則切線方程為,則圓心到切點(diǎn)的距離,不合題意;若切線斜率存在,設(shè)切線方程為,即,則,整理得,且設(shè)兩切線斜率分別為,則,可得,所以,即,可得,則,且,則,解得.故選:B.
7.記為數(shù)列的前項和,設(shè)甲:為等差數(shù)列;乙:為等差數(shù)列,則(
)A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件【答案】C【分析】利用充分條件、必要條件的定義及等差數(shù)列的定義,再結(jié)合數(shù)列前n項和與第n項的關(guān)系推理判斷作答.,【詳解】方法1,甲:為等差數(shù)列,設(shè)其首項為,公差為,則,因此為等差數(shù)列,則甲是乙的充分條件;反之,乙:為等差數(shù)列,即為常數(shù),設(shè)為,即,則,有,兩式相減得:,即,對也成立,因此為等差數(shù)列,則甲是乙的必要條件,所以甲是乙的充要條件,C正確.方法2,甲:為等差數(shù)列,設(shè)數(shù)列的首項,公差為,即,則,因此為等差數(shù)列,即甲是乙的充分條件;反之,乙:為等差數(shù)列,即,即,,當(dāng)時,上兩式相減得:,當(dāng)時,上式成立,于是,又為常數(shù),因此為等差數(shù)列,則甲是乙的必要條件,所以甲是乙的充要條件.故選:C8.已知,則(
).A. B. C. D.【答案】B【分析】根據(jù)給定條件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式計算作答.【詳解】因?yàn)?,而,因此,則,所以.故選:B【點(diǎn)睛】方法點(diǎn)睛:三角函數(shù)求值的類型及方法(1)“給角求值”:一般所給出的角都是非特殊角,從表面來看較難,但非特殊角與特殊角總有一定關(guān)系.解題時,要利用觀察得到的關(guān)系,結(jié)合三角函數(shù)公式轉(zhuǎn)化為特殊角的三角函數(shù).(2)“給值求值”:給出某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實(shí)質(zhì)上也轉(zhuǎn)化為“給值求值”,關(guān)鍵也是變角,把所求角用含已知角的式子表示,由所得的函數(shù)值結(jié)合該函數(shù)的單調(diào)區(qū)間求得角,有時要壓縮角的取值范圍.二、多選題9.有一組樣本數(shù)據(jù),其中是最小值,是最大值,則(
)A.的平均數(shù)等于的平均數(shù)B.的中位數(shù)等于的中位數(shù)C.的標(biāo)準(zhǔn)差不小于的標(biāo)準(zhǔn)差D.的極差不大于的極差【答案】BD【分析】根據(jù)題意結(jié)合平均數(shù)、中位數(shù)、標(biāo)準(zhǔn)差以及極差的概念逐項分析判斷.【詳解】對于選項A:設(shè)的平均數(shù)為,的平均數(shù)為,則,因?yàn)闆]有確定的大小關(guān)系,所以無法判斷的大小,例如:,可得;例如,可得;例如,可得;故A錯誤;對于選項B:不妨設(shè),可知的中位數(shù)等于的中位數(shù)均為,故B正確;對于選項C:因?yàn)槭亲钚≈?,是最大值,則的波動性不大于的波動性,即的標(biāo)準(zhǔn)差不大于的標(biāo)準(zhǔn)差,例如:,則平均數(shù),標(biāo)準(zhǔn)差,,則平均數(shù),標(biāo)準(zhǔn)差,顯然,即;故C錯誤;對于選項D:不妨設(shè),則,當(dāng)且僅當(dāng)時,等號成立,故D正確;故選:BD.10.噪聲污染問題越來越受到重視.用聲壓級來度量聲音的強(qiáng)弱,定義聲壓級,其中常數(shù)是聽覺下限閾值,是實(shí)際聲壓.下表為不同聲源的聲壓級:聲源與聲源的距離聲壓級燃油汽車10混合動力汽車10電動汽車1040已知在距離燃油汽車、混合動力汽車、電動汽車處測得實(shí)際聲壓分別為,則(
).A. B.C. D.【答案】ACD【分析】根據(jù)題意可知,結(jié)合對數(shù)運(yùn)算逐項分析判斷.【詳解】由題意可知:,對于選項A:可得,因?yàn)椋瑒t,即,所以且,可得,故A正確;對于選項B:可得,因?yàn)?,則,即,所以且,可得,當(dāng)且僅當(dāng)時,等號成立,故B錯誤;對于選項C:因?yàn)?,即,可得,即,故C正確;對于選項D:由選項A可知:,且,則,即,可得,且,所以,故D正確;故選:ACD.11.已知函數(shù)的定義域?yàn)?,,則(
).A. B.C.是偶函數(shù) D.為的極小值點(diǎn)【答案】ABC【分析】方法一:利用賦值法,結(jié)合函數(shù)奇遇性的判斷方法可判斷選項ABC,舉反例即可排除選項D.方法二:選項ABC的判斷與方法一同,對于D,可構(gòu)造特殊函數(shù)進(jìn)行判斷即可.【詳解】方法一:因?yàn)?,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域?yàn)?,所以為偶函?shù),故正確,對于D,不妨令,顯然符合題設(shè)條件,此時無極值,故錯誤.方法二:因?yàn)?,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域?yàn)?,所以為偶函?shù),故正確,對于D,當(dāng)時,對兩邊同時除以,得到,故可以設(shè),則,當(dāng)肘,,則,令,得;令,得;故在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)闉榕己瘮?shù),所以在上單調(diào)遞增,在上單調(diào)遞減,顯然,此時是的極大值,故D錯誤.故選:.12.下列物體中,能夠被整體放入棱長為1(單位:m)的正方體容器(容器壁厚度忽略不計)內(nèi)的有(
)A.直徑為的球體B.所有棱長均為的四面體C.底面直徑為,高為的圓柱體D.底面直徑為,高為的圓柱體【答案】ABD【分析】根據(jù)題意結(jié)合正方體的性質(zhì)逐項分析判斷.【詳解】對于選項A:因?yàn)?,即球體的直徑小于正方體的棱長,所以能夠被整體放入正方體內(nèi),故A正確;對于選項B:因?yàn)檎襟w的面對角線長為,且,所以能夠被整體放入正方體內(nèi),故B正確;對于選項C:因?yàn)檎襟w的體對角線長為,且,所以不能夠被整體放入正方體內(nèi),故C正確;對于選項D:因?yàn)?,可知底面正方形不能包含圓柱的底面圓,如圖,過的中點(diǎn)作,設(shè),可知,則,即,解得,且,即,故以為軸可能對稱放置底面直徑為圓柱,若底面直徑為的圓柱與正方體的上下底面均相切,設(shè)圓柱的底面圓心,與正方體的下底面的切點(diǎn)為,可知:,則,即,解得,根據(jù)對稱性可知圓柱的高為,所以能夠被整體放入正方體內(nèi),故D正確;故選:ABD.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:對于C、D:以正方體的體對角線為圓柱的軸,結(jié)合正方體以及圓柱的性質(zhì)分析判斷.三、填空題13.某學(xué)校開設(shè)了4門體育類選修課和4門藝術(shù)類選修課,學(xué)生需從這8門課中選修2門或3門課,并且每類選修課至少選修1門,則不同的選課方案共有________種(用數(shù)字作答).【答案】64【分析】分類討論選修2門或3門課,對選修3門,再討論具體選修課的分配,結(jié)合組合數(shù)運(yùn)算求解.【詳解】(1)當(dāng)從8門課中選修2門,則不同的選課方案共有種;(2)當(dāng)從8門課中選修3門,①若體育類選修課1門,則不同的選課方案共有種;②若體育類選修課2門,則不同的選課方案共有種;綜上所述:不同的選課方案共有種.故答案為:64.14.在正四棱臺中,,則該棱臺的體積為________.【答案】/【分析】結(jié)合圖像,依次求得,從而利用棱臺的體積公式即可得解.【詳解】如圖,過作,垂足為,易知為四棱臺的高,
因?yàn)?,則,故,則,所以所求體積為.故答案為:.15.已知函數(shù)在區(qū)間有且僅有3個零點(diǎn),則的取值范圍是________.【答案】【分析】令,得有3個根,從而結(jié)合余弦函數(shù)的圖像性質(zhì)即可得解.【詳解】因?yàn)椋?,令,則有3個根,令,則有3個根,其中,結(jié)合余弦函數(shù)的圖像性質(zhì)可得,故,故答案為:.16.已知雙曲線的左、右焦點(diǎn)分別為.點(diǎn)在上,點(diǎn)在軸上,,則的離心率為________.【答案】/【分析】方法一:利用雙曲線的定義與向量數(shù)積的幾何意義得到關(guān)于的表達(dá)式,從而利用勾股定理求得,進(jìn)而利用余弦定理得到的齊次方程,從而得解.方法二:依題意設(shè)出各點(diǎn)坐標(biāo),從而由向量坐標(biāo)運(yùn)算求得,,將點(diǎn)代入雙曲線得到關(guān)于的齊次方程,從而得解;【詳解】方法一:依題意,設(shè),則,在中,,則,故或(舍去),所以,,則,故,所以在中,,整理得,故.方法二:依題意,得,令,因?yàn)?,所以,則,又,所以,則,又點(diǎn)在上,則,整理得,則,所以,即,整理得,則,解得或,又,所以或(舍去),故.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:雙曲線過焦點(diǎn)的三角形的解決關(guān)鍵是充分利用雙曲線的定義,結(jié)合勾股定理與余弦定理得到關(guān)于的齊次方程,從而得解.四、解答題17.已知在中,.(1)求;(2)設(shè),求邊上的高.【答案】(1)(2)6【分析】(1)根據(jù)角的關(guān)系及兩角和差正弦公式,化簡即可得解;(2)利用同角之間的三角函數(shù)基本關(guān)系及兩角和的正弦公式求,再由正弦定理求出,根據(jù)等面積法求解即可.【詳解】(1),,即,又,,,,即,所以,.(2)由(1)知,,由,由正弦定理,,可得,,.18.如圖,在正四棱柱中,.點(diǎn)分別在棱,上,.
(1)證明:;(2)點(diǎn)在棱上,當(dāng)二面角為時,求.【答案】(1)證明見解析;(2)1【分析】(1)建立空間直角坐標(biāo)系,利用向量坐標(biāo)相等證明;(2)設(shè),利用向量法求二面角,建立方程求出即可得解.【詳解】(1)以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,如圖,
則,,,又不在同一條直線上,.(2)設(shè),則,設(shè)平面的法向量,則,令,得,,設(shè)平面的法向量,則,令,得,,,化簡可得,,解得或,或,.19.已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時,.【答案】(1)答案見解析(2)證明見解析【分析】(1)先求導(dǎo),再分類討論與兩種情況,結(jié)合導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解;(2)方法一:結(jié)合(1)中結(jié)論,將問題轉(zhuǎn)化為的恒成立問題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進(jìn)而將問題轉(zhuǎn)化為的恒成立問題,由此得證.【詳解】(1)因?yàn)椋x域?yàn)?,所以,?dāng)時,由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時,令,解得,當(dāng)時,,則在上單調(diào)遞減;當(dāng)時,,則在上單調(diào)遞增;綜上:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時,等號成立,因?yàn)?,?dāng)且僅當(dāng),即時,等號成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,恒成立,證畢.20.設(shè)等差數(shù)列的公差為,且.令,記分別為數(shù)列的前項和.(1)若,求的通項公式;(2)若為等差數(shù)列,且,求.【答案】(1)(2)【分析】(1)根據(jù)等差數(shù)列的通項公式建立方程求解即可;(2)由為等差數(shù)列得出或,再由等差數(shù)列的性質(zhì)可得,分類討論即可得解.【詳解】(1),,解得,,又,,即,解得或(舍去),.(2)為等差數(shù)列,,即,,即,解得或,,,又,由等差數(shù)列性質(zhì)知,,即,,即,解得或(舍去)當(dāng)時,,解得,與矛盾,無解;當(dāng)時,,解得.綜上,.21.甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對方投籃.無論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.(1)求第2次投籃的人是乙的概率;(2)求第次投籃的人是甲的概率;(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.【答案】(1)(2)(3)【分析】(1)根據(jù)全概率公式即可求出;(2)設(shè),由題意可得,根據(jù)數(shù)列知識,構(gòu)造等比數(shù)列即可解出;(3)先求出兩點(diǎn)分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,所以,.(2)設(shè),依題可知,,則,即,構(gòu)造等比數(shù)列,設(shè),解得,則,又,所以是首項為,公比為的等比數(shù)列,即.(3)因?yàn)?,,所以?dāng)時,,故.【點(diǎn)睛】本題第一問直接考查全概率公式的應(yīng)用,后兩問的解題關(guān)鍵是根據(jù)題意找到遞推式,然后根據(jù)數(shù)列的基本知識求解.22.在直角坐標(biāo)系中,點(diǎn)到軸的距離等于點(diǎn)到點(diǎn)的距離,記動點(diǎn)的軌跡為.(1)求的方程;(2)已知矩形有三個頂點(diǎn)在上,證明:矩形的周長大于.【答案】(1)(2)見解析【分析】(1)設(shè),根據(jù)題意列出方程,化簡即可;(2)法一:設(shè)矩形的三個頂點(diǎn),且,分別令,,且,利用放縮法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國co2定價制度
- 2025年度智能工程用車租賃服務(wù)合同書
- 銅陵安徽銅陵市銅官區(qū)小學(xué)非編音樂教師招聘筆試歷年參考題庫附帶答案詳解
- 金華浙江金華共青團(tuán)永康市委員會工作人員招聘筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市委政法委員會所屬事業(yè)單位招聘高層次人才筆試歷年參考題庫附帶答案詳解
- 海南2025年海南省健康宣傳教育中心招聘事業(yè)編制人員筆試歷年參考題庫附帶答案詳解
- 常德2025年湖南常德市市直部分事業(yè)單位集中招聘79人筆試歷年參考題庫附帶答案詳解
- 2025年中國五香熏魚調(diào)料市場調(diào)查研究報告
- 2025至2031年中國貢絲綿面料行業(yè)投資前景及策略咨詢研究報告
- 承德2025年河北承德市教育局選聘急需緊缺學(xué)科教師61人筆試歷年參考題庫附帶答案詳解
- 數(shù)理統(tǒng)計考試試卷及答案解析
- 排水溝施工合同電子版(精選5篇)
- 清新典雅文藝教師公開課說課PPT課件模板
- 大氣商務(wù)企業(yè)培訓(xùn)之團(tuán)隊合作的重要性PPT模板
- 2022年四川省成都市成華區(qū)七年級下學(xué)期期末語文試卷
- 石油化工、煤化工、天然氣化工優(yōu)劣勢分析
- 10kV配網(wǎng)工程變配電(臺架變、箱變、電纜分接箱)的安裝設(shè)計施工精細(xì)化標(biāo)準(zhǔn)
- Q∕GDW 12118.3-2021 人工智能平臺架構(gòu)及技術(shù)要求 第3部分:樣本庫格式
- 廣東省義務(wù)教育階段學(xué)生轉(zhuǎn)學(xué)轉(zhuǎn)出申請表(樣本)
- 機(jī)耕路工程施工方案與技術(shù)措施
- 如何成為一個優(yōu)秀的生產(chǎn)經(jīng)理
評論
0/150
提交評論