版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若點(diǎn)A(1+m,1﹣n)與點(diǎn)B(﹣3,2)關(guān)于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.12.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y63.如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π4.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或05.對于實(shí)數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),如[4]=4,[]=1,[﹣2.5]=﹣3.現(xiàn)對82進(jìn)行如下操作:82[]=9[]=3[]=1,這樣對82只需進(jìn)行3次操作后變?yōu)?,類似地,對121只需進(jìn)行多少次操作后變?yōu)?()A.1 B.2 C.3 D.46.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差7.計算(-ab2)3÷(-ab)2的結(jié)果是()A.a(chǎn)b4B.-ab4C.a(chǎn)b3D.-ab38.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.429.下列汽車標(biāo)志中,不是軸對稱圖形的是()A. B. C. D.10.如圖,已知,為反比例函數(shù)圖象上的兩點(diǎn),動點(diǎn)在軸正半軸上運(yùn)動,當(dāng)線段與線段之差達(dá)到最大時,點(diǎn)的坐標(biāo)是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機(jī)摸出一個球,記下顏色后再放回袋中,不斷地重復(fù)這個過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請你估計這個袋中紅球約有_____個.12.計算(2+1)(2-1)的結(jié)果為_____.13.拋物線y=mx2+2mx+5的對稱軸是直線_____.14.小李和小林練習(xí)射箭,射完10箭后兩人的成績?nèi)鐖D所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計這兩人中的新手是_____.15.如圖,在△ABC中,AB=AC=15,點(diǎn)D是BC邊上的一動點(diǎn)(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤16.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對角線AC、BD應(yīng)滿足條件_____.17.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則a的最大值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過點(diǎn)C作AD的垂線交AB的延長線于點(diǎn)G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.19.(5分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.以點(diǎn)O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點(diǎn)B′順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.20.(8分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長.21.(10分)某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進(jìn)行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補(bǔ)全條形統(tǒng)計圖;學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.22.(10分)如圖,在?ABCD中,以點(diǎn)4為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?3.(12分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點(diǎn)O,經(jīng)過點(diǎn)O的直線與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.24.(14分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)(1)求a、b的值;(2)過動點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時,求n的取值范圍;(3)動點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當(dāng)△PAC為等腰三角形時,直接寫出t的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】根據(jù)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,據(jù)此求出m、n的值,代入計算可得.【詳解】∵點(diǎn)A(1+m,1﹣n)與點(diǎn)B(﹣3,2)關(guān)于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點(diǎn)睛】本題考查了關(guān)于y軸對稱的點(diǎn),熟練掌握關(guān)于y軸對稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變是解題的關(guān)鍵.2、D【解析】
根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點(diǎn)睛】考查了整式的運(yùn)算能力,對于相關(guān)的整式運(yùn)算法則要求學(xué)生很熟練,才能正確求出結(jié)果.3、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點(diǎn):1.扇形面積的計算;2.旋轉(zhuǎn)的性質(zhì).4、A【解析】
把x=﹣1代入方程計算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點(diǎn)睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.5、C【解析】分析:[x]表示不大于x的最大整數(shù),依據(jù)題目中提供的操作進(jìn)行計算即可.詳解:121∴對121只需進(jìn)行3次操作后變?yōu)?.故選C.點(diǎn)睛:本題是一道關(guān)于無理數(shù)的題目,需要結(jié)合定義的新運(yùn)算和無理數(shù)的估算進(jìn)行求解.6、D【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越小;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.7、B【解析】根據(jù)積的乘方的運(yùn)算法則,先分別計算積的乘方,然后再根據(jù)單項式除法法則進(jìn)行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.8、B【解析】
根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個數(shù)據(jù),
所以中位數(shù)為第3、4個數(shù)的平均數(shù),即中位數(shù)為=39,
故選:B.【點(diǎn)睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,若這組數(shù)據(jù)的個數(shù)是奇數(shù),則最中間的那個數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個數(shù)是偶數(shù),則最中間兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).9、C【解析】
根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點(diǎn)睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.10、D【解析】
求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當(dāng)P在P′點(diǎn)時,PA-PB=AB,此時線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關(guān)系定理得:,延長交軸于,當(dāng)在點(diǎn)時,,即此時線段與線段之差達(dá)到最大,設(shè)直線的解析式是,把,的坐標(biāo)代入得:,解得:,直線的解析式是,當(dāng)時,,即,故選D.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點(diǎn)的位置,題目比較好,但有一定的難度.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據(jù)概率公式計算這個口袋中黑球的數(shù)量,繼而得出答案.【詳解】因?yàn)楣裁?00次球,發(fā)現(xiàn)有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數(shù)量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點(diǎn)睛】本題考查了利用頻率估計概率:大量重復(fù)實(shí)驗(yàn)時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.12、1【解析】
利用平方差公式進(jìn)行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算:先把各二次根式化為最簡二次根式,在進(jìn)行二次根式的乘除運(yùn)算,然后合并同類二次根式.13、x=﹣1【解析】
根據(jù)拋物線的對稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【點(diǎn)睛】解答本題關(guān)鍵是識記拋物線的對稱軸公式x=.14、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.15、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當(dāng)∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當(dāng)∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當(dāng)△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點(diǎn):1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).16、AC=BD.【解析】試題分析:添加的條件應(yīng)為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應(yīng)為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn),∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點(diǎn):1.菱形的性質(zhì);2.三角形中位線定理.17、1【解析】
首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點(diǎn)A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點(diǎn)睛】圓外一點(diǎn)到圓上一點(diǎn)的距離最大值為點(diǎn)到圓心的距離加半徑,最小值為點(diǎn)到圓心的距離減去半徑.三、解答題(共7小題,滿分69分)18、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據(jù)同弧所對的圓周角和圓心角的關(guān)系可得結(jié)論;
(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設(shè)CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點(diǎn)睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關(guān)鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設(shè)未知數(shù),根據(jù)勾股定理列方程解決問題.19、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】
(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點(diǎn)的對應(yīng)點(diǎn),順次連接即可.(2)△A′B′C′的A′、C′繞點(diǎn)B′順時針旋轉(zhuǎn)90°得到對應(yīng)點(diǎn),順次連接即可.A′B′在旋轉(zhuǎn)過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【詳解】解:(1)見圖中△A′B′C′
(2)見圖中△A″B′C″
扇形的面積(平方單位).【點(diǎn)睛】本題主要考查了位似圖形及旋轉(zhuǎn)變換作圖的方法及扇形的面積公式.20、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應(yīng)邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點(diǎn),∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點(diǎn),∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點(diǎn)睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運(yùn)用;證明某一線段是圓的切線時,一般情況下是連接切點(diǎn)與圓心,通過證明該半徑垂直于這一線段來判定切線.21、48;105°;2【解析】試題分析:根據(jù)B的人數(shù)和百分比求出總?cè)藬?shù),根據(jù)D的人數(shù)和總?cè)藬?shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根據(jù)總?cè)藬?shù)求出C的人數(shù),然后補(bǔ)全統(tǒng)計圖;記A類學(xué)生擅長書法的為A1,擅長繪畫的為A2,根據(jù)題意畫出表格,根據(jù)概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補(bǔ)全圖形如下:(2)記A類學(xué)生擅長書法的為A1,擅長繪畫的為A2,則可列下表:
A1
A1
A2
A2
A1
√
√
A1
√
√
A2
√
√
A2
√
√
∴由上表可得:P(考點(diǎn):統(tǒng)計圖、概率的計算.22、(1)見解析;(2)60°.【解析】
(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結(jié)BF,交AE于G.根據(jù)菱形的性質(zhì)得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結(jié)BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與菱形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì)與菱形的判定與性質(zhì).23、(1)證明見解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】
(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;
(2)證明四邊形DEBF是矩形,由矩形的性質(zhì)和等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件公司總經(jīng)理聘任合同
- 河道整治自卸車租賃協(xié)議
- 政府機(jī)構(gòu)租賃合同-政府
- 垃圾處理保溫系統(tǒng)安裝協(xié)議
- 高空水電站設(shè)備維護(hù)合同
- 資產(chǎn)轉(zhuǎn)讓協(xié)議三篇
- 芹菜收購合同范本(2篇)
- 公交車廣告違約終止合同通知書
- 集體合同培訓(xùn)材料
- 煙酒貨物運(yùn)輸合同范例
- 《金融學(xué)原理》期末考試復(fù)習(xí)題庫(含答案)
- 企業(yè)公司簡介模板課件
- 南京信息工程大學(xué)《高等代數(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 口腔診所耗材管理制度實(shí)施細(xì)則
- 保護(hù)環(huán)境志愿活動
- Unit1復(fù)合不定代詞專項練習(xí) 人教版八年級英語上冊
- 《工程施工組織與概預(yù)算》綜合測試四及答案
- 信息素養(yǎng)通識教程:數(shù)字化生存的必修課學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 醫(yī)療器械經(jīng)營企業(yè)醫(yī)療器械銷售記錄制度
- 政府采購體育服務(wù)合同
- 二十屆三中全會精神學(xué)習(xí)題庫及答案
評論
0/150
提交評論