2023屆山東省微山縣第一中學數(shù)學高二第二學期期末統(tǒng)考試題含解析_第1頁
2023屆山東省微山縣第一中學數(shù)學高二第二學期期末統(tǒng)考試題含解析_第2頁
2023屆山東省微山縣第一中學數(shù)學高二第二學期期末統(tǒng)考試題含解析_第3頁
2023屆山東省微山縣第一中學數(shù)學高二第二學期期末統(tǒng)考試題含解析_第4頁
2023屆山東省微山縣第一中學數(shù)學高二第二學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023高二下數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從5個中國人、4個美國人、3個日本人中各選一人的選法有()A.12種 B.24種 C.48種 D.60種2.如圖,一環(huán)形花壇分成四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為()A.96 B.84 C.60 D.483.若直線的參數(shù)方程為(為參數(shù)),則直線的傾斜角為()A. B. C. D.4.已知m>0,n>0,向量則的最小值是(

)A. B.2 C. D.5.已知一列數(shù)按如下規(guī)律排列:,則第9個數(shù)是()A.-50 B.50 C.42 D.—426.已知圓,定點,點為圓上的動點,點在上,點在線段上,且滿足,,則點的軌跡方程是()A. B.C. D.7.設(shè)橢圓的左、右焦點分別為,點.已知動點在橢圓上,且點不共線,若的周長的最小值為,則橢圓的離心率為()A. B. C. D.8.已知數(shù)列的前項和為,,則“”是“數(shù)列是等比數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若點P在拋物線上,點Q(0,3),則|PQ|的最小值是()A. B. C. D.10.下列結(jié)論中正確的是()A.導數(shù)為零的點一定是極值點B.如果在附近的左側(cè),右端,那么是極大值C.如果在附近的左側(cè),右端,那么是極小值D.如果在附近的左側(cè),右端,那么是極大值11.已知數(shù)列的通項公式為,則()A.-1 B.3 C.7 D.912.設(shè)雙曲線C:的一個頂點坐標為(2,0),則雙曲線C的方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則的展開式中的常數(shù)項為__________.14.若實數(shù)x,y滿足x+y-2≥0x≤4y≤5則z=y-x的最小值為15.已知復(fù)數(shù)z=,其中i是虛數(shù)單位,則z的實部為________.16.已知圓:的面積為,類似的,橢圓:的面積為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且當時,取得極值為.(1)求的解析式;(2)若關(guān)于的方程在上有兩個不同的實數(shù)解,求實數(shù)的取值范圍.18.(12分)為了促進學生的全面發(fā)展,某市教育局要求本市所有學校重視社團文化建設(shè),2014年該市某中學的某新生想通過考核選撥進入該校的“電影社”和“心理社”,已知該同學通過考核選撥進入這兩個社團成功與否相互獨立根據(jù)報名情況和他本人的才藝能力,兩個社團都能進入的概率為,至少進入一個社團的概率為,并且進入“電影社”的概率小于進入“心理社”的概率(Ⅰ)求該同學分別通過選撥進入“電影社”的概率和進入心理社的概率;(Ⅱ)學校根據(jù)這兩個社團的活動安排情況,對進入“電影社”的同學增加1個校本選修課學分,對進入“心理社”的同學增加0.5個校本選修課學分.求該同學在社團方面獲得校本選修課學分分數(shù)不低于1分的概率.19.(12分)已知知x為正實數(shù),n為正偶數(shù),在的展開式中,(1)若前3項的系數(shù)依次成等差數(shù)列,求n的值及展開式中的有理項;(2)求奇數(shù)項的二項式系數(shù)的和與偶數(shù)項的二項式系數(shù)的和,并比較它們的大小.20.(12分)已知橢圓:的左、右焦點分別為,,過原點且斜率為1的直線交橢圓于兩點,四邊形的周長與面積分別為12與.(1)求橢圓的標準方程;(2)直線與圓相切,且與橢圓交于兩點,求原點到的中垂線的最大距離.21.(12分)中,三內(nèi)角所對的邊分別為,已知成等差數(shù)列.(Ⅰ)求證:;(Ⅱ)求角的取值范圍.22.(10分)已知函數(shù).(1)畫出函數(shù)的大致圖象,并寫出的值域;(2)若關(guān)于的不等式有解,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

直接根據(jù)乘法原理得到答案.【詳解】根據(jù)乘法原理,一共有種選法.故選:.【點睛】本題考查了乘法原理,屬于簡單題.2、B【解析】解:分三類:種兩種花有種種法;種三種花有2種種法;種四種花有種種法.共有2++=1.故選B3、D【解析】

將直線的參數(shù)方程化為普通方程,求出斜率,進而得到傾斜角。【詳解】設(shè)直線的傾斜角為,將直線的參數(shù)方程(為參數(shù))消去參數(shù)可得,即,所以直線的斜率所以直線的傾斜角,故選D.【點睛】本題考查參數(shù)方程和普通方程的互化以及直線的傾斜角,屬于簡單題。4、C【解析】分析:利用向量的數(shù)量積為0,求出m,n的方程,然后利用基本不等式求解表達式的最小值即可.詳解:m>0,n>0,向量,可得,則,當且僅當時,表達式取得最小值.故選:C.點睛:條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.5、A【解析】分析:根據(jù)規(guī)律從第3個數(shù)起,每一個數(shù)等于前兩個數(shù)之差,確定第9個數(shù).詳解:因為從第3個數(shù)起,每一個數(shù)等于前兩個數(shù)之差,所以第9個數(shù)是,選A.點睛:由前幾項歸納數(shù)列通項的常用方法為:觀察(觀察規(guī)律)、比較(比較已知數(shù)列)、歸納、轉(zhuǎn)化(轉(zhuǎn)化為特殊數(shù)列)、聯(lián)想(聯(lián)想常見的數(shù)列)等方法.6、A【解析】試題分析:由,可知,直線為線段的中垂線,所以有,所以有,所以點的軌跡是以點為焦點的橢圓,且,即,所以橢圓方程為,故選A.考點:1.向量運算的幾何意義;2.橢圓的定義與標準方程.【名師點睛】本題主要考查向量運算的幾何意義、橢圓的定義與橢圓方程的求法,屬中檔題.求橢圓標準方程常用方法有:1.定義法,即根據(jù)題意得到所求點的軌跡是橢圓,并求出的值;2.選定系數(shù)法:根據(jù)題意先判斷焦點在哪個坐標軸上,設(shè)出其標準方程,根據(jù)已知條件建立關(guān)系的方程組,解之即可.7、A【解析】分析:利用橢圓定義的周長為,結(jié)合三點共線時,的最小值為,再利用對稱性,可得橢圓的離心率.詳解:的周長為,∴故選:A點睛:橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).8、C【解析】

先令,求出,再由時,根據(jù),求出,結(jié)合充分條件與必要條件的概念,即可得出結(jié)果.【詳解】解:當時,,當時,時,,,數(shù)列是等比數(shù)列;當數(shù)列是等比數(shù)列時,,,,所以,是充分必要條件。故選C【點睛】本題主要考查充分必要條件的判定,熟記概念,以及數(shù)列的遞推公式即可求解,屬于??碱}型.9、B【解析】試題分析:如圖所示,設(shè),其中,則,故選B.考點:拋物線.10、B【解析】

根據(jù)極值點的判斷方法進行判斷.【詳解】若,則,,但是上的增函數(shù),故不是函數(shù)的極值點.因為在的左側(cè)附近,有,在的右側(cè)附近,有,故的左側(cè)附近,有為增函數(shù),在的右側(cè)附近,有為減函數(shù),故是極大值.故選B.【點睛】函數(shù)的極值刻畫了函數(shù)局部性質(zhì),它可以理解為函數(shù)圖像具有“局部最低(高)”的特性,用數(shù)學語言描述則是:“在的附近的任意,有()”.另外如果在附近可導且的左右兩側(cè)導數(shù)的符號發(fā)生變化,則必為函數(shù)的極值點,具體如下.(1)在的左側(cè)附近,有,在的右側(cè)附近,有,則為函數(shù)的極大值點;(1)在的左側(cè)附近,有,在的右側(cè)附近,有,則為函數(shù)的極小值點;11、C【解析】

直接將代入通項公式,可得答案.【詳解】數(shù)列的通項公式為.所以當時,.故選:C【點睛】本題考查求數(shù)列中的項,屬于基礎(chǔ)題.12、D【解析】

利用雙曲線的一個頂點坐標為,求得的值,即可求得雙曲線的方程,得到答案.【詳解】由題意,因為雙曲線的一個頂點坐標為,所以,所以雙曲線的標準方程為,故選D.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質(zhì)的應(yīng)用,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-160.【解析】由,所以二項式展開式的常數(shù)項為.14、-6【解析】略視頻15、【解析】分析:先化簡復(fù)數(shù)z=,再確定復(fù)數(shù)z的實部.詳解:由題得z==,所以復(fù)數(shù)z的實部為,故答案為.點睛:(1)本題主要考查復(fù)數(shù)的運算和復(fù)數(shù)的實部的概念,意在考查學生對這些基礎(chǔ)知識的掌握水平和基本運算能力.(2)復(fù)數(shù)的實部是a,虛部為b,不是bi.16、【解析】

根據(jù)類比推理直接寫的結(jié)論即可.【詳解】圓中存在互相垂直的半徑,圓的面積為:橢圓中存在互相垂直的長半軸和短半軸,則類比可得橢圓的面積為:本題正確結(jié)果:【點睛】本題考查類比推理的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】分析:(1)先根據(jù)導數(shù)幾何意義得,再與函數(shù)值聯(lián)立方程組解得的解析式;(2)先化簡方程得,再利用導數(shù)研究函數(shù)在上單調(diào)性,結(jié)合函數(shù)圖像確定條件,解得結(jié)果.詳解:(1),由題意得,,即,解得,∴.(2)由有兩個不同的實數(shù)解,得在上有兩個不同的實數(shù)解,設(shè),由,由,得或,當時,,則在上遞增,當時,,則在上遞減,由題意得,即,解得,點睛:涉及函數(shù)的零點問題、方程解的個數(shù)問題、函數(shù)圖像交點個數(shù)問題,一般先通過導數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢等,再借助函數(shù)的大致圖象判斷零點、方程根、交點的情況,歸根到底還是研究函數(shù)的性質(zhì),如單調(diào)性、極值,然后通過數(shù)形結(jié)合的思想找到解題的思路.18、(1)(2)【解析】

(Ⅰ)利用相互獨立事件概率乘法公式和對立事件概率計算公式列出方程組,能求出結(jié)果.(Ⅱ)利用獨立事件的概率乘法公式分別求得分數(shù)為1和1.5時的概率,再利用互斥事件概率計算公式求得結(jié)果.【詳解】(Ⅰ)根據(jù)題意得:,且p1<p2,∴p1,p2.(Ⅱ)令該同學在社團方面獲得校本選修課加分分數(shù)為ξ,P(ξ=1)=(1),P(ξ=1.5),∴該同學在社團方面獲得校本選修課學分分數(shù)不低于1分的概率:p.【點睛】本題考查概率的求法,考查相互獨立事件概率乘法公式、對立事件概率計算公式、互斥事件概率計算公式等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.19、(1),有理項有三項,分別為:;(2)128,128,相等【解析】

(1)首先找出展開式的前3項,然后利用等差數(shù)列的性質(zhì)即可列出等式,求出n,于是求出通項,再得到有理項;(2)分別計算偶數(shù)項和奇數(shù)項的二項式系數(shù)和,比較大小即可.【詳解】(1)二項展開式的前三項的系數(shù)分別為:,而前三項構(gòu)成等差數(shù)列,故,解得或(舍去);所以,當時,為有理項,又且,所以符合要求;故有理項有三項,分別為:;(2)奇數(shù)項的二項式系數(shù)和為:,偶數(shù)項的二項式系數(shù)和為:,故奇數(shù)項的二項式系數(shù)的和等于偶數(shù)項的二項式系數(shù)的和.【點睛】本題主要考查二項式定理的通項,二項式系數(shù)和,注意二項式系數(shù)和與系數(shù)和的區(qū)別,意在考查學生的計算能力和分析能力,難度中等.20、(1)(2)【解析】

(1)不妨設(shè)點是第一象限的點,由四邊形的周長求出,面積求出與關(guān)系,再由點在直線上,得到與關(guān)系,代入橢圓方程,求解即可;(2)先求出直線斜率不存在時,原點到的中垂線的距離,斜率為0時與橢圓只有一個交點,直線斜率存在時,設(shè)其方程為,利用與圓相切,求出關(guān)系,直線方程與橢圓方程聯(lián)立,求出中點坐標,得到的中垂線方程,進而求出原點到中垂線的距離表達式,結(jié)合關(guān)系,即可求出結(jié)論.【詳解】(1)不妨設(shè)點是第一象限的點,因為四邊形的周長為12,所以,,因為,所以,得,點為過原點且斜率為1的直線與橢圓的交點,即點在直線上,點在橢圓上,所以,即,解得或(舍),所以橢圓的標準方程為.(2)當直線的斜率不存在時,直線為,線段的中垂線為軸,原點到軸的距離為0.當直線的斜率存在時,設(shè)斜率為,依題意可設(shè),因為直線與圓相切,所以,設(shè),,聯(lián)立,得,由,得,又因為,所以,所以,所以的中點坐標為,所以的中垂線方程為,化簡,得,原點到直線中垂線的距離,當且僅當,即時,等號成立,所以原點到的中垂線的最大距離為.【點睛】本題考查橢圓的標準方程、直線與橢圓的位置關(guān)系、點到直線的距離,利用基本不等式求最值,考查邏輯推理、數(shù)學計算能力,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)由成等差數(shù)列,可得,結(jié)合基本不等式和正弦定理可以證明出;(Ⅱ)運用余弦定理可以求出的表達式,利用重要不等式和(Ⅰ)中的結(jié)論,可以求出,結(jié)合余弦函數(shù)的圖象和角是三角形的內(nèi)角,最后可求出角的取值范圍.【詳解】解:(Ⅰ)成等差數(shù)列,,,即,當且僅當時取等號由正弦定理得(Ⅱ)由余弦定理,當且僅當時取等號由(Ⅰ)得,,,故角的取值范圍是【點睛】本題考查了等差中項的概念,考查了正弦定理、余弦定理、重要不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論