一集合的含義與表示_第1頁
一集合的含義與表示_第2頁
一集合的含義與表示_第3頁
一集合的含義與表示_第4頁
一集合的含義與表示_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

(一)集合的含義與表示元素與集合的“屬于”關(guān)系2?能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。 (二)集合間的基本關(guān)系1?理解集合之間包含與相等的含義,能識別給定集合的子集2?在具體情境中,了解全集與空集的含義 (三)集合的基本運算?理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。2?理解在給定集合中一個子集的補集的含義,會求給定子集的補集.3?能使用韋恩圖(Venn)表達集合的關(guān)系及運算。根據(jù)考試大綱的要求,結(jié)合2009年高考的命題情況,我們可以預(yù)測2010年集合部分在選擇、填空數(shù)、方程、三角、不等式等知識為載體,以集合的語言和符號為表現(xiàn)形式,結(jié)合簡易邏輯知識考查學生的數(shù)學思想、數(shù)學方法和數(shù)學能力,題型常以解答題的形式出現(xiàn)第1課時集合的概念1?集合是一個不能定義的原始概念,描述性定義為:某些指定的對象________就成為一個集合,簡稱______?集合中的每一個對象叫做這個集合的_____________?3?集合的表示法常用的有_____________、____________和韋恩圖法三種,有限集常用___________,無限集常用____________,圖示法常用于表示集合之間的相互關(guān)系.aA___________,B5?集合與集合的關(guān)系用符號_____________表示.BAB_______?真子集有____________個.10?空集是一個特殊而又重要的集合,它不含任何元素,是任何集合的_____________,__________,解題時不可忽視8例1.已知集合AxN|—「N,試求集合A的所有子集.6x2,4,5,即A2,4,5????A的所有子集為,{2},{4},{5},{2,4},{2,5},{4,5}{2,4,5}abaababb,a0,b,baabbabbaab1'a'a'''''0②a1b1解:此時只可能{2,3,a22a3},A{|2a1|,2},CUA{5},求實數(shù)a的值.2a2a35,易得a:2a2a3Ax求m22得3a+2=0,a=——或—a+2=0,a=2;值為0或——或2.33(2)B=,即m+1>2m-1,m<2:A成立.2m2m12m1mme3???△=4-12m<0,即m>].3若0,則△=0,即4-12m=0,m=l.332m.bb答案:A中至多只有一個元素包含A中只有一個元素和A是空集兩種含義,根據(jù)(1)、(2)的3變式訓練3.(1)已知A={a+2,(a+1)2,a2+3a+3}且1€A求實數(shù)a的值;M,a,b},N={2a,2,b2}且M=N求a,b的值.a+2=1或(a+1)2=1或a2+3a+3=1,a2 a2 題意知,abba-2,???a=0即為所求.1412根據(jù)元素的互異性得14即為所求.12a7},B={1,a+1,a2a2,5},試求實數(shù)a的值.-(a23a8)、2則a32a2a7=5(a—2)(a—1)(a+1)=0,a=—1或a=1或a=2.探究2:aq},其中0,若A=B,求q已知集合A={a,a+探究2:aq},其中0,若A=B,求qadaqadaq2答案:-??A=B???(I)a2daq(n)a2daq1由(I)得q=1,由(n)得q=1或q=—2.和數(shù)集混淆.2.利用相等集合的定義解題時,特別要注意集合中元素的互異性,對計算的結(jié)果要檢驗.4.要注意數(shù)學思想方法在解題中的運用,如化歸與轉(zhuǎn)化、分類討論、數(shù)形結(jié)合的思想方法在解題中的應(yīng)用.AB的并集,記作AUB,即AUB常用運算性質(zhì)BnA,AUA=_______,2.____________________ACUA=_______________,ACUA=______________,C(CuA)3.Cu(AB)____________,Cu(AB)____________,AUB=A小小(CuM)N.二CuMm|m10,即m40,即n1???Nn|n1414*解之得解之得1a2.31或a5,1,2];若ABa4或a5二(CUM)INx|x14變式訓練1.已知集合A=xl-61,xR,B=xlx22xm0,x1x(1)當m=3時,求A(CRB);(2)若A|Bx|1x4,求實數(shù)m的值.■,x10.二-1VxW5,???A=x|1x5.x1x⑵?-A=x|1此時B=x|2x4|,x3,則CRB=x|xx5AIBx|1x4,?有42-2X4-m=0,解得m=8(1)若AIB⑵若AUB1)AIBAIB{x|axa3},B{x|x1或x5}.a1aB…a5(5,).變式訓練2:設(shè)集合A=x|x23x20,Bx|x22(a1)x(a25)0解:由x2-3x+2=0得x=1或x=2,故集合A=1,2.得a2+4a+3=0,??a=-1或a=-3;a數(shù)的關(guān)系得5122(a1)a2即2,矛盾;12a25綜上,a的取值范圍是aw-3.BAACUBAIBa--aM-1^且aM-3^且aM-13.aABa的值;若不存在,請說明理由.(2a)240x1x210則由根與系數(shù)的關(guān)系,得解得a°或則由根與系數(shù)的關(guān)系,得解得a°或*4即a4.Xix2(2a)0a2又?集合a|a4的補集為a|a4,AHBM,則方程組€N*},B={(x,y)|y=ax2-ax+a,x2x1有正整數(shù)解,消去y,得ax2-(a+2)x+a+1=0.ax2axa33此時AHB={(1,1),(2,3)}.探究2:例4.已知A={x|x2—2ax+(4a—3)=0,x€R},又B={x|x2—22ax+a2+a+理由.1集合C為不等式(ax-)(x4)0的解集.(1)求AIB;(2)若Ca值范圍.--------------------------的值域,x1C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論