版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省眉山市彭山區(qū)2023年高三第八次聯(lián)考數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.2.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.3.為計算,設(shè)計了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.4.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.45.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③6.若點是角的終邊上一點,則()A. B. C. D.7.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.8.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.9.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱11.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.12.設(shè)為銳角,若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.14.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則__________.15.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則容器體積的最小值為_________.16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.18.(12分)已知數(shù)列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.19.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機變量滿足,則認為.假設(shè)當(dāng)時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.20.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.21.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.22.(10分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當(dāng)直線的方程為時,求拋物線的方程;(2)當(dāng)正數(shù)變化時,記分別為的面積,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。2、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.3、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結(jié)束,屬于基礎(chǔ)題.4、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.5、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.6、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【點睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準確化簡、計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標.8、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.9、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時,直線,直線,此時兩條直線平行;當(dāng)時,直線,直線,此時兩條直線平行.所以當(dāng)時,推不出,故“”是“”的不充分條件,當(dāng)時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.10、C【解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.11、C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.12、D【解析】
用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.14、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.15、【解析】
一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.16、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解析:(1)由題意知當(dāng)時,,當(dāng)時,,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題.“錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結(jié)果一定不能忘記等式兩邊同時除以.18、(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(dāng)(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當(dāng)時,,即,得,①當(dāng)時,,即,得,②當(dāng)時,,即,得,③②①,得,③②,得,解得.代入①式,得.此時(),所以,是公比為1的等比數(shù)列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數(shù)列,由,得,兩式相減得:即所以相減得:所以所以,因為,所以,即數(shù)列是等差數(shù)列.19、(1)(2)①,,②72【解析】
(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.20、(1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可.試題解析:整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【全程復(fù)習(xí)方略】2020年高考政治一輪課時提升作業(yè)(9)-必修1-第4單元-第9課(江蘇專供)
- 安徽省蚌埠市A層高中2024-2025學(xué)年高二上學(xué)期第二次聯(lián)考地理試卷(含答案)
- 【原創(chuàng)】2013-2020學(xué)年高二數(shù)學(xué)必修四導(dǎo)學(xué)案:3.2二倍角的三角
- 【紅對勾】2021高考生物(人教版)一輪課時作業(yè):必修3-第6章-生態(tài)環(huán)境的保護
- 《胸腔鏡術(shù)后護理》課件
- 2024-2025學(xué)年廣東省汕頭市金平區(qū)七年級(上)期末數(shù)學(xué)試卷
- 五年級數(shù)學(xué)(小數(shù)乘法)計算題專項練習(xí)及答案匯編
- 【全程復(fù)習(xí)方略】2021年高中化學(xué)選修三課時達標·效果檢測-第3章-晶體結(jié)構(gòu)與性質(zhì)3.4-
- 【優(yōu)化方案】2020-2021學(xué)年高一下學(xué)期數(shù)學(xué)(必修3)模塊綜合檢測
- 【志鴻優(yōu)化設(shè)計】2020高考地理(人教版)一輪教學(xué)案:第17章-第1講世界地理概況
- 2025年統(tǒng)編版中考語文課內(nèi)文言文《湖心亭看雪》三年中考試題+模擬題(解析版)
- 2023年二輪復(fù)習(xí)解答題專題四:一次函數(shù)的應(yīng)用圖象型(原卷版+解析)
- 2024學(xué)年四川省成都天府新區(qū)九年級上學(xué)期一診數(shù)學(xué)模擬試題(原卷版)
- 倉庫勞務(wù)外包方案
- 人工電桿拆除施工方案
- 2024至2030年中國頸部按摩器行業(yè)發(fā)展戰(zhàn)略規(guī)劃及市場規(guī)模預(yù)測報告
- 人教版英語2024七年級上冊全冊單元測試卷
- 2024年放射醫(yī)學(xué)技術(shù)(士、師)考試題庫(附含答案)
- 加油加氣站 反恐防范重點目標檔案 范例2024
- 《工程招投標與合同管理》期末考試復(fù)習(xí)題及參考答案
- 芯片制造與半導(dǎo)體技術(shù)考核試卷
評論
0/150
提交評論