版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.2.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.4.函數(shù)在的圖象大致為A. B.C. D.5.已知集合,則()A. B. C. D.6.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.47.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.8.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③9.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.10.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.11.已知函數(shù),對任意的,,當(dāng)時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是12.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為銳角,若,則的值為____________.14.(5分)函數(shù)的定義域是____________.15.已知非零向量,滿足,且,則與的夾角為____________.16.函數(shù)在區(qū)間(-∞,1)上遞增,則實數(shù)a的取值范圍是____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標(biāo)原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.18.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.19.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內(nèi),求的面積.20.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學(xué)期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)21.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時.【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.2、B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.3、B【解析】
運行程序,依次進行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B【點睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.4、A【解析】
因為,所以排除C、D.當(dāng)從負(fù)方向趨近于0時,,可得.故選A.5、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.6、A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題7、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.8、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.9、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.10、A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.11、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.12、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
∵為銳角,,∴,∴,,故.14、【解析】
要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.15、(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數(shù)量積運算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計算能力.16、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標(biāo),表示出,根據(jù)韋達(dá)定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點睛】本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題,屬于中檔題.18、(1);(2).【解析】
(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導(dǎo)數(shù)求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設(shè),則,令,則,即.設(shè),且,則當(dāng)時,,所以單調(diào)遞減;當(dāng)時,,所以單調(diào)遞增,所以當(dāng)時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導(dǎo)數(shù)在實際問題中的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道中檔題.19、(1)(2)【解析】
(1)因為,可得,即可求得答案;(2)分別設(shè)、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進而求得切點,坐標(biāo),根據(jù)兩點間距離公式求得,根據(jù)點到直線距離公式求得點到切線的距離,進而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點,,過點的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點到切線的距離為,,即的面積為.【點睛】本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關(guān)鍵是掌握拋物線定義和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式20、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當(dāng)時,,遞增,當(dāng)時,,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當(dāng)時,,遞減,當(dāng)時,,遞增.,所以,①當(dāng);②當(dāng)時,設(shè),遞增,,所以.綜上,.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強調(diào)一點,處理恒成立問題時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.22、(1)見解析(2)見解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進行分類討論單調(diào)性(2)欲證,只
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年粵教版七年級地理下冊月考試卷
- 2025年教科新版選修1歷史上冊階段測試試卷
- 2025年度蔬菜加工企業(yè)居間采購協(xié)議3篇
- 2024年華師大版九年級數(shù)學(xué)下冊階段測試試卷
- 2024無鹵物料環(huán)保協(xié)議書
- 2024年資源互換合作合同
- 2025年魯科版九年級化學(xué)下冊階段測試試卷
- 2025年冀教新版七年級語文下冊階段測試試卷
- 利用視頻課程構(gòu)建家庭運動教育體系
- 2025年湘師大新版高一生物上冊月考試卷
- 2022-2024年浙江中考英語試題匯編:完形填空(學(xué)生版)
- 中試部培訓(xùn)資料
- 【可行性報告】2024年第三方檢測相關(guān)項目可行性研究報告
- 藏醫(yī)學(xué)專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓(xùn)
- 2024新版《藥品管理法》培訓(xùn)課件
- DB41T 2302-2022 人工影響天氣地面作業(yè)規(guī)程
- 【初中語文】2024-2025學(xué)年新統(tǒng)編版語文七年級上冊期中專題12:議論文閱讀
- 四川省成都市2022-2023學(xué)年高二上學(xué)期期末調(diào)研考試物理試題(原卷版)
- 2024政務(wù)服務(wù)綜合窗口人員能力與服務(wù)規(guī)范考試試題
- JT∕T 1477-2023 系列2集裝箱 角件
評論
0/150
提交評論