版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、是雙曲線的左右焦點(diǎn),過(guò)點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.2.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于()A. B. C. D.3.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.4.已知是邊長(zhǎng)為的正三角形,若,則A. B.C. D.5.對(duì)于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.46.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.167.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件8.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.59.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.10.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.211.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.12.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為互不相等的正實(shí)數(shù),隨機(jī)變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.若存在直線l與函數(shù)及的圖象都相切,則實(shí)數(shù)的最小值為_(kāi)__________.15.若函數(shù)為偶函數(shù),則________.16.已知實(shí)數(shù),滿足則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點(diǎn).求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.18.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.19.(12分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍20.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.21.(12分)已知函數(shù).(1)解不等式:;(2)求證:.22.(10分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實(shí)數(shù)a,b滿足1a+1
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過(guò)點(diǎn)F1與雙曲線的一條漸過(guò)線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.2、A【解析】
先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.3、D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.4、A【解析】
由可得,因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,故選A.5、C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.6、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.7、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.9、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.10、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.11、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.12、C【解析】
求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、>【解析】
根據(jù)方差計(jì)算公式,計(jì)算出的表達(dá)式,由此利用差比較法,比較出兩者的大小關(guān)系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡(jiǎn)得①,由于為互不相等的正實(shí)數(shù),故,也即,也即.故答案為:【點(diǎn)睛】本小題主要考查隨機(jī)變量期望和方差的計(jì)算,考查差比較法比較大小,考查運(yùn)算求解能力,屬于難題.14、【解析】
設(shè)直線l與函數(shù)及的圖象分別相切于,,因?yàn)?,所以函?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)椋院瘮?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)榇嬖谥本€l與函數(shù)及的圖象都相切,所以,所以,令,設(shè),則,當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,所以實(shí)數(shù)的最小值為.15、【解析】
二次函數(shù)為偶函數(shù)說(shuō)明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題16、【解析】
根據(jù)約束條件畫(huà)出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫(huà)出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【點(diǎn)睛】本題考查了非線性約束條件下線性規(guī)劃的簡(jiǎn)單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)取的中點(diǎn)構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點(diǎn),連接,,是棱的中點(diǎn),底面是矩形,,且,又,分別是棱,的中點(diǎn),,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點(diǎn)是棱的中點(diǎn),,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點(diǎn)睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.18、(1)答案見(jiàn)解析.(2)【解析】
(1)通過(guò)證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以.因?yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)?,所以平面.因?yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過(guò)點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點(diǎn)分區(qū)間法,去掉絕對(duì)值解不等式;(2)根據(jù)絕對(duì)值不等式的性質(zhì)得,因此將問(wèn)題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時(shí),不等式恒成立;當(dāng)時(shí),解不等式得.綜上.所以實(shí)數(shù)的取值范圍為.20、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫妫?同理可證,因?yàn)?,所以平?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過(guò)作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過(guò)的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.21、(1);(2)見(jiàn)解析.【解析】
(1)代入得,分類(lèi)討論,解不等式即可;(2)利用絕對(duì)值不等式得性質(zhì),,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對(duì)于,可得.又,由于,所以.又由于,于是.所以.【點(diǎn)睛】本題考查了絕對(duì)值不等式得求解和恒成立問(wèn)題,考查了學(xué)生分類(lèi)討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.22、(Ⅰ){x|-3≤x≤2}(Ⅱ)見(jiàn)證明【解析】
(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當(dāng)x>1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 全國(guó)講師培訓(xùn)課件
- 七年級(jí)道德與法治上冊(cè)第四單元生命的思考第八課探問(wèn)生命第二框敬畏生命教案新人教版
- 成都酒店英語(yǔ)培訓(xùn)課件
- 2021幼兒園園長(zhǎng)證培訓(xùn)測(cè)試題庫(kù)含答案
- 團(tuán)隊(duì)規(guī)劃培訓(xùn)課件
- 《細(xì)胞周期的調(diào)控》課件
- 培訓(xùn)課件選擇思路
- 微笑禮儀培訓(xùn)課件
- 《病例討論傷寒》課件
- 《致我所有的朋友》課件
- 單位工程、分部工程、分項(xiàng)工程及檢驗(yàn)批劃分方案
- 七年級(jí)數(shù)學(xué)資料培優(yōu)匯總精華
- 器樂(lè)Ⅰ小提琴課程教學(xué)大綱
- 主債權(quán)合同及不動(dòng)產(chǎn)抵押合同(簡(jiǎn)化版本)
- 服裝廠安全生產(chǎn)責(zé)任書(shū)
- JGJ202-2010建筑施工工具式腳手架安全技術(shù)規(guī)范
- 液壓爬模系統(tǒng)作業(yè)指導(dǎo)書(shū)
- 2018-2019學(xué)年北京市西城區(qū)人教版六年級(jí)上冊(cè)期末測(cè)試數(shù)學(xué)試卷
- SFC15(發(fā)送)和SFC14(接收)組態(tài)步驟
- LX電動(dòng)單梁懸掛說(shuō)明書(shū)
- 旅行社公司章程53410
評(píng)論
0/150
提交評(píng)論