版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P22.已知向量,,當(dāng)時,()A. B. C. D.3.某高中高三(1)班為了沖刺高考,營造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李4.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.5.函數(shù)的圖象可能為()A. B.C. D.6.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.7.已知集合,,則等于()A. B. C. D.8.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.9.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.10.已知函數(shù),對任意的,,當(dāng)時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是11.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.12.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序?qū)⒚總€螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.14.已知,則展開式中的系數(shù)為__15.在數(shù)列中,,則數(shù)列的通項公式_____.16.設(shè)變量,滿足約束條件,則目標函數(shù)的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.18.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:19.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設(shè)圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.21.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺數(shù)(萬臺)2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結(jié)果:,,,,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.22.(10分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.2、A【解析】
根據(jù)向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.3、D【解析】
根據(jù)題意,分別假設(shè)一個正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應(yīng)用.4、C【解析】
畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.5、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.6、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.7、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8、C【解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.9、B【解析】
先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導(dǎo)函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.10、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.11、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】
先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時,由,得,解得,此時;②當(dāng)時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時,,則,此時;當(dāng)時,,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設(shè)選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關(guān)分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應(yīng)的過程寫出來,所以利用列舉法將對應(yīng)的結(jié)果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結(jié)果.14、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個因式的乘積.
故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.
故展開式中的系數(shù).
故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.15、【解析】
由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.【點睛】本題考查求數(shù)列的通項公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結(jié)果是分段函數(shù)形式.16、-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時,在軸截距最大本題正確結(jié)果:【點睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由,可求,然后由時,可得,根據(jù)等比數(shù)列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當(dāng)時,,解得,當(dāng)時,①②②①得,即,數(shù)列是以2為首項,2為公比的等比數(shù)列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數(shù)列的通項求解中的應(yīng)用,等比數(shù)列的通項公式、裂項求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.18、(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時等號成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據(jù)絕對值的定義,合理去掉絕對值號,及合理轉(zhuǎn)化恒成立問題是解答本題的關(guān)鍵,著重考查分析問題和解答問題的能力,以及轉(zhuǎn)化思想的應(yīng)用.19、(1)見解析(2)見解析【解析】
(1)連結(jié)AC交BD于點O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點O,連結(jié)OE因為四邊形ABCD為平行四邊形∴O為AC中點,又E為PC中點,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點所以PC⊥DE因為平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側(cè)重考查邏輯推理的核心素養(yǎng).20、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關(guān)于軸對稱,設(shè),,設(shè),由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關(guān)于軸對稱,設(shè),,設(shè),由于點在橢圓C上,所以,由,則,.由于,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國均苯四甲酸二酐產(chǎn)業(yè)前景趨勢展望及投資戰(zhàn)略決策報告
- 2024-2030年中國發(fā)動機軸承橡膠模行業(yè)市場運營模式及未來發(fā)展動向預(yù)測報告
- 2024年生態(tài)修復(fù)工程用草種采購合同
- 2024年生態(tài)旅游區(qū)門面房買賣合同范本3篇
- 2024年版地下水開采合同3篇
- 2024年珠寶首飾租賃協(xié)議2篇
- 2024年企事業(yè)單位食堂餐飲承包合同及員工餐飲健康促進3篇
- 2018企業(yè)首席質(zhì)量官培訓(xùn)考核試題(綜合卷)
- 2024年標準離婚股權(quán)分割合同模板版B版
- 2025年深圳從業(yè)資格證貨運模擬考試下載
- Unit 7單元教案 2024-2025學(xué)年人教版(2024)七年級英語上冊
- Unit 6 My sweet home(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(三起)(2024)小學(xué)英語三年級上冊
- 北師大版教案正比例函數(shù)案例分析
- 行政文秘筆試題
- 人教版(2024)七年級地理上冊跨學(xué)科主題學(xué)習(xí)《探索外來食料作物傳播史》精美課件
- 2024-2025學(xué)年七年級數(shù)學(xué)上冊第一學(xué)期 期末模擬測試卷(湘教版)
- 職業(yè)素質(zhì)養(yǎng)成(吉林交通職業(yè)技術(shù)學(xué)院)智慧樹知到答案2024年吉林交通職業(yè)技術(shù)學(xué)院
- 《紅樓夢》第5課時:欣賞小說人物創(chuàng)作的詩詞(教學(xué)教學(xué)設(shè)計)高一語文同步備課系列(統(tǒng)編版必修下冊)
- 【新教材】蘇科版(2024)七年級上冊數(shù)學(xué)第1-6章全冊教案設(shè)計
- 天津2024年天津市應(yīng)急管理局招聘應(yīng)急管理綜合行政執(zhí)法專職技術(shù)檢查員筆試歷年典型考題及考點附答案解析
- 工業(yè)物聯(lián)網(wǎng)(IIoT)行業(yè)發(fā)展全景調(diào)研與投資趨勢預(yù)測研究報告
評論
0/150
提交評論