2023屆福建省廈門市四校中考試題猜想數(shù)學試卷含解析_第1頁
2023屆福建省廈門市四校中考試題猜想數(shù)學試卷含解析_第2頁
2023屆福建省廈門市四校中考試題猜想數(shù)學試卷含解析_第3頁
2023屆福建省廈門市四校中考試題猜想數(shù)學試卷含解析_第4頁
2023屆福建省廈門市四校中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.22.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.93.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π4.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.65.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個6.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.47.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣28.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是().A. B.C. D.9.如圖,直線y=kx+b與y=mx+n分別交x軸于點A(﹣1,0),B(4,0),則函數(shù)y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>410.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=12.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.13.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據(jù)此規(guī)律,第10個圖形有_______個五角星.14.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內(nèi)部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______15.如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數(shù)是_____°.16.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為▲.17.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當△EFC是直角三角形時,那么BE的長為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.19.(5分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.20.(8分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).21.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2522.(10分)隨著社會經(jīng)濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學興趣小組隨機抽取了我市某單位部分職工進行調(diào)查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:(1)調(diào)查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是________;(2)把條形統(tǒng)計圖補充完整;(3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.23.(12分)計算:24.(14分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由折疊的性質(zhì)可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關(guān)鍵.2、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關(guān)鍵.3、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關(guān)計算.4、C【解析】

根據(jù)等腰三角形的性質(zhì)可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質(zhì)、三角形中位線定理,熟練掌握三角形中位線定理是解題的關(guān)鍵.5、C【解析】

根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.6、D【解析】

①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.7、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應(yīng)的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關(guān)鍵.8、B【解析】

把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點坐標為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點坐標為(0,3),

∵拋物線繞與y軸的交點旋轉(zhuǎn)180°,

∴所得拋物線的頂點坐標為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點的變化確定函數(shù)解析式的變化可以使求解更簡便.9、C【解析】

看兩函數(shù)交點坐標之間的圖象所對應(yīng)的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點睛】本題主要考查一次函數(shù)和一元一次不等式,本題是借助一次函數(shù)的圖象解一元一次不等式,兩個圖象的“交點”是兩個函數(shù)值大小關(guān)系的“分界點”,在“分界點”處函數(shù)值的大小發(fā)生了改變.10、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關(guān)系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設(shè)BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關(guān)鍵.12、250【解析】

從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.13、1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.14、;答案見解析.【解析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.15、4.【解析】試題分析:連結(jié)BC,因為AB是⊙O的直徑,所以∠ACB=90°,∠A+∠ABC=90°,又因為BD,CD分別是過⊙O上點B,C的切線,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.考點:4.圓周角定理;4.切線的性質(zhì);4.切線長定理.16、.【解析】待定系數(shù)法,曲線上點的坐標與方程的關(guān)系,反比例函數(shù)圖象的對稱性,正方形的性質(zhì).【分析】由反比例函數(shù)的對稱性可知陰影部分的面積和正好為小正方形面積的,設(shè)小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據(jù)點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數(shù)的解析式:∵反比例函數(shù)的圖象關(guān)于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設(shè)正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(shù)(k>0)的圖象上,∴k=2×3=2.∴此反比例函數(shù)的解析式為:.17、1.5或3【解析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質(zhì),勾股定理,矩形的性質(zhì),正方形的判定與性質(zhì),利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】

(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進行判斷;(3)由B、E的坐標可先求得直線BE的解析式,則可求得F點的坐標,當AF為邊時,則有FM∥AN且FM=AN,則可求得M點的縱坐標,代入拋物線解析式可求得M點坐標;當AF為對角線時,由A、F的坐標可求得平行四邊形的對稱中心,可設(shè)出M點坐標,則可表示出N點坐標,再由N點在x軸上可得到關(guān)于M點坐標的方程,可求得M點坐標.【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,∴拋物線頂點坐標為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標代入可得,解得,∴直線BE解析式為y=x+1,當x=2時,y=2,∴F(2,2),①當AF為平行四邊形的一邊時,則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點M的縱坐標為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標為(,﹣2);②當AF為平行四邊形的對角線時,∵A(4,0),F(xiàn)(2,2),∴線段AF的中點為(3,1),即平行四邊形的對稱中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點M在拋物線對稱軸右側(cè),∴x>2,∵t>2,∴t=,∴M點坐標為(,2);綜上可知存在滿足條件的點M,其坐標為(,2)或(,﹣2).【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.在(1)中求得拋物線的頂點坐標是解題的關(guān)鍵,注意拋物線頂點式的應(yīng)用,在(2)中求得△EDB各邊的長度是解題的關(guān)鍵,在(3)中確定出M點的縱坐標是解題的關(guān)鍵,注意分類討論.本題考查知識點較多,綜合性較強,難度較大.19、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結(jié)合點B的坐標找出點D的坐標,設(shè)直線AD的解析式為y=mx+n,結(jié)合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達式y(tǒng)=,聯(lián)立兩個函數(shù)關(guān)系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關(guān)于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設(shè)直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.待定系數(shù)法求一次函數(shù)解析式;3.軸對稱-最短路線問題.20、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標為(,1)或(,1).21、(3)證明見試題解析;(3)3.【解析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點:3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.22、(1)50,20%,72°.(2)圖形見解析;(3)選出的2人來自不同科室的概率=35【解析】試題分析:(1)根據(jù)調(diào)查樣本人數(shù)=A類的人數(shù)除以對應(yīng)的百分比.樣本中B類人數(shù)百分比=B類人數(shù)除以總?cè)藬?shù),B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)=B類人數(shù)的百分比×360°.(2)先求出樣本中B類人數(shù),再畫圖.(3)畫樹狀圖并求出選出的2人來自不同科室的概率.試題解析:(1)調(diào)查樣本人數(shù)為4÷8%=50(人),樣本中B類人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論