版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)輔助線的添加淺篇一:淺談初中數(shù)學(xué)輔助線的添加淺談初中數(shù)學(xué)輔助線的添加人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時,添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是解決問題常用的策略。一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個幾何定理都有與它相對應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:(1)平行線是個基本圖形:當(dāng)幾何中出現(xiàn)平行線時添輔助線的關(guān)鍵是添與二條平行線都相交的等第三條直線(2)等腰三角形是個簡單的基本圖形:當(dāng)幾何問題中出現(xiàn)一點發(fā)出的二條相等線段時往往要補(bǔ)完整等腰三角形。出現(xiàn)角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。(3)等腰三角形中的重要線段是個重要的基本圖形:出現(xiàn)等腰三角形底邊上的中點添底邊上的中線;出現(xiàn)角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。(4)直角三角形斜邊上中線基本圖形出現(xiàn)直角三角形斜邊上的中點往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。(5)三角形中位線基本圖形幾何問題中出現(xiàn)多個中點時往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點沒有中位線時則添中位線,當(dāng)有中位線三角形不完整時則需補(bǔ)完整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形;當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。(6)全等三角形:全等三角形有軸對稱形,中心對稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個檔相等角關(guān)于某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或?qū)⑷切窝貙ΨQ軸翻轉(zhuǎn)。當(dāng)幾何問題中出現(xiàn)一組或兩組相等線段位于一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結(jié)或過二端點添平行線(7)相似三角形:相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉(zhuǎn)型;當(dāng)出現(xiàn)相比線段重疊在一直線上時(中點可看成比為1)可添加平行線得平行線型相似三角形。若平行線過端點添則可以分點或另一端點的線段為平行方向,這類題目中往往有多種淺線方法。(8)特殊角直角三角形當(dāng)出現(xiàn)30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:也;30度角直角三角形三邊比為1:2:也進(jìn)行證明(9)半圓上的圓周角出現(xiàn)直徑與半圓上的點,添90度的圓周角;出現(xiàn)90度的圓周角則添它所對弦---直徑;平面幾何中總共只有二十多個基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一樣。二.基本圖形的輔助線的畫法.三角形問題添加輔助線方法方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很容易地解決了問題。方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利用全等三角形的知識解決問題。方法3:結(jié)論是兩線段相等的題目常畫輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類題目,常采用截長法或補(bǔ)短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于第二條線段。.平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問題轉(zhuǎn)化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:(1)連對角線或平移對角線:(2)過頂點作對邊的垂線構(gòu)造直角三角形(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構(gòu)造線段平行或中位線(4)連接頂點與對邊上一點的線段或延長這條線段,構(gòu)造三角形相似或等積三角形。(5)過頂點作對角線的垂線,構(gòu)成線段平行或三角形全等..梯形中常用輔助線的添法梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當(dāng)?shù)妮o助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內(nèi)部平移一腰。(2)梯形外平移一腰(3)梯形內(nèi)平移兩腰(4)延長兩腰(5)過梯形上底的兩端點向下底作高(6)平移對角線(7)連接梯形一頂點及一腰的中點。(8)過一腰的中點作另一腰的平行線。(9)作中位線當(dāng)然在梯形的有關(guān)證明和計算中,添加的輔助線并不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關(guān)鍵。.圓中常用輔助線的添法在平面幾何中,解決與圓有關(guān)的問題時,常常需要添加適當(dāng)?shù)妮o助線,架起題設(shè)和結(jié)論間的橋梁,從而使問題化難為易,順其自然地得到解決,因此,靈活掌握作輔助線的一般規(guī)律和常見方法,對提高學(xué)生分析問題和解決問題的能力是大有幫助的。有關(guān)弦的問題,常作其弦心距(有時還須作出相應(yīng)的半徑),通過垂徑平分定理,來溝通題設(shè)與結(jié)論間的聯(lián)系。(2)見直徑作圓周角在題目中若已知圓的直徑,一般是作直徑所對的圓周角,利用直徑所對的圓周角是直角這一特征來證明問題。(3)見切線作半徑命題的條件中含有圓的切線,往往是連結(jié)過切點的半徑,利用切線與半徑垂直這一性質(zhì)來證明問題。(4)兩圓相切作公切線對兩圓相切的問題,一般是經(jīng)過切點作兩圓的公切線或作它們的連心線,通過公切線可以找到與圓有關(guān)的角的關(guān)系。(5)兩圓相交作公共弦對兩圓相交的問題,通常是作出公共弦,通過公共弦既可把兩圓的弦聯(lián)系起來,又可以把兩圓中的圓周角或圓心角聯(lián)系起來。作輔助線的方法一:中點、中位線,延線,平行線。如遇條件中有中點,中線、中位線等,那么過中點,延長中線或中位線作輔助線,使延長的某一段等于中線或中位線;另一種輔助線是過中點作已知邊或線段的平行線,以達(dá)到應(yīng)用某個定理或造成全等的目的。二:垂線、分角線,翻轉(zhuǎn)全等連。如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,并借助其他條件,而旋轉(zhuǎn)180度,得到全等形,,這時輔助線的做法就會應(yīng)運而生。其對稱軸往往是垂線或角的平分線。三:邊邊若相等,旋轉(zhuǎn)做實驗。如遇條件中有多邊形的兩邊相等或兩角相等,有時邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角度,就可以得到全等形,這時輔助線的做法仍會應(yīng)運而生。其對稱中心,因題而異,有時沒有中心。故可分“有心”和“無心”旋轉(zhuǎn)兩種。四:造角、平、相似,和、差、積、商見。如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關(guān)。在制造兩個三角形相似時,一般地,有兩種方法:第一,造一個輔助角等于已知角;第二,是把三角形中的某一線段進(jìn)行平移。故作歌訣:“造角、平、相似,和差積商見?!蓖辛忻锥ɡ砗兔啡~勞定理的證明輔助線分別是造角和平移的代表)五:兩圓若相交,連心公共弦。如果條件中出現(xiàn)兩圓相交,那么輔助線往往是連心線或公共弦。六:兩圓相切、離,連心,公切線。如條件中出現(xiàn)兩圓相切(外切,內(nèi)切),或相離(內(nèi)含、外離),那么,輔助線往往是連心線或內(nèi)外公切線。七:切線連直徑,直角與半圓。如果條件中出現(xiàn)圓的切線,那么輔助線是過切點的直徑或半徑使出現(xiàn)直角;相反,條件中是圓的直徑,半徑,那么輔助線是過直徑(或半徑)端點的切線。即切線與直徑互為輔助線。如果條件中有直角三角形,那么作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條件中有半圓,那么在直徑上找圓周角一直角為輔助線。即直角與半圓互為輔助線。八:弧、弦、弦心距;平行、等距、弦。如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反之,亦成立。有時,圓周角,弦切角,圓心角,圓內(nèi)角和圓外角也存在因果關(guān)系互相聯(lián)想作輔助線。篇二:初中幾何輔助線大全(很詳細(xì)哦)初中幾何輔助線一克勝秘籍等腰三角形.作底邊上的高,構(gòu)成兩個全等的直角三角形,這是用得最多的一種方法;.作一腰上的高;.過底邊的一個端點作底邊的垂線,與另一腰的延長線相交,構(gòu)成直角三角形。梯形.垂直于平行邊.垂直于下底,延長上底作一腰的平行線.平行于兩條斜邊.作兩條垂直于下底的垂線.延長兩條斜邊做成一個三角形菱形.連接兩對角2.做高平行四邊形.垂直于平行邊.作對角線一把一個平行四邊形分成兩個三角形.做高一一形內(nèi)形外都要注意矩形1.對角線2.作垂線很簡單。無論什么題目,第一位應(yīng)該考慮到題目要求,比如AB=AC+BD.…這類的就是想辦法作出另一條AB等長的線段,再證全等說明AC+BD=另一條AB,就好了。還有一些關(guān)于平方的考慮勾股,A字形等。三角形圖中有角平分線,可向兩邊作垂線(垂線段相等)。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。解幾何題時如何畫輔助線?①見中點引中位線,見中線延長一倍在幾何題中,如果給出中點或中線,可以考慮過中點作中位線或把中線延長一倍來解決相關(guān)問題。②在比例線段證明中,常作平行線。作平行線時往往是保留結(jié)論中的一個比,然后通過一個中
間比與結(jié)論中的另一個比聯(lián)系起來。③對于梯形問題,常用的添加輔助線的方法有1、過上底的兩端點向下底作垂線2、過上底的一個端點作一腰的平行線3、過上底的一個端點作一對角線的平行線4、過一腰的中點作另一腰的平行線4、過一腰的中點作另一腰的平行線5、過上底一端點和一腰中點的直線與下底的延長線相交6、作梯形的中位線7、延長兩腰使之相交四邊形平行四邊形出現(xiàn),對稱中心等分點。梯形里面作高線,平移一腰試試看。平行移動對角線,補(bǔ)成三角形常見。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線初中數(shù)學(xué)輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時,添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是
解決問題常用的策略。一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個幾何定理都有與它相對應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補(bǔ)完整基本圖形,因此不完整時補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:(1)平行線是個基本圖形:當(dāng)幾何中出現(xiàn)平行線時添輔助線的關(guān)鍵是添與二條平行線都相交的等第三條直線(2)等腰三角形是個簡單的基本圖形:當(dāng)幾何問題中出現(xiàn)一點發(fā)出的二條相等線段時往往要補(bǔ)完整等腰三角形。出現(xiàn)角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。(3)等腰三角形中的重要線段是個重要的基本圖形:出現(xiàn)等腰三角形底邊上的中點添底邊上的中線;出現(xiàn)角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。(4)直角三角形斜邊上中線基本圖形出現(xiàn)直角三角形斜邊上的中點往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。(5)三角形中位線基本圖形幾何問題中出現(xiàn)多個中點時往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點沒有中位線時則添中位線,當(dāng)有中位線三角形不完整時則需補(bǔ)完整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形;當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。(6)全等三角形:全等三角形有軸對稱形,中心對稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個檔相等角關(guān)于某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或?qū)⑷切窝貙ΨQ軸翻轉(zhuǎn)。當(dāng)幾何問題中出現(xiàn)一組或兩組相等線段位于一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結(jié)或過二端點添平行線(8)特殊角直角三角形當(dāng)出現(xiàn)30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:72;30度角直角三角形三邊比為1:2:73進(jìn)行證明二.基本圖形的輔助線的畫法.三角形問題添加輔助線方法方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很容易地解決了問題。方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利用全等三角形的知識解決問題。方法3:結(jié)論是兩線段相等的題目常畫輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類題目,常采用截長法或補(bǔ)短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于第二條線段。.平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問題轉(zhuǎn)化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:(1)連對角線或平移對角線:(2)過頂點作對邊的垂線構(gòu)造直角三角形(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構(gòu)造線段平行或中位線(4)連接頂點與對邊上一點的線段或延長這條線段,構(gòu)造三角形相似或等積三角形。(5)過頂點作對角線的垂線,構(gòu)成線段平行或三角形全等.3.梯形中常用輔助線的添法梯形是一種特殊的四邊形。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學(xué)《書法基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《回歸分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 第二章 統(tǒng)計調(diào)查與整 理課件
- 第8章 廣告管理課件
- 創(chuàng)意美術(shù)活動展報道稿
- 2024年宜昌旅客運輸從業(yè)資格證考試題庫
- 2024年阿壩客運從業(yè)資格證考試技巧
- 2024年海南客運從業(yè)資格證模擬考試試題及答案
- 2024年杭州駕駛員客運從業(yè)資格證模擬考試題
- 2024年合肥客運駕駛員試題答案
- 少兒美術(shù)課件國家寶藏系列《云肩》
- 教師業(yè)務(wù)考試試題
- 5.1 延續(xù)文化血脈 課件-2024-2025學(xué)年統(tǒng)編版道德與法治九年級上冊-2
- 2024年環(huán)磷酰胺原料藥項目發(fā)展計劃
- 國開(河北)2024年《商務(wù)談判實務(wù)》形成性考核1-4答案
- 二年級數(shù)學(xué)上冊教案 4、除法的初步認(rèn)識 蘇教版
- 2024年統(tǒng)編版新教材語文小學(xué)二年級上冊第四、第五單元檢測題附答案(各一套)
- 人教版(2024)八年級上冊物理第2章《聲現(xiàn)象》單元測試卷(含答案解析)
- 2024年公路養(yǎng)護(hù)工技師考試試題及答案
- 人教PEP五年級上冊英語說課稿 Unit 1 What's he like 第二課時
- 2024年專屬石斛采購與銷售合作協(xié)議
評論
0/150
提交評論