版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.2.已知三棱柱()A. B. C. D.3.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標原點),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.164.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.5.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.6.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.7.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.8.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.9.函數(shù)在的圖象大致為()A. B.C. D.10.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.11.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點對稱C.周期為 D.在上是增函數(shù)12.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.14.?dāng)?shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______15.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.16.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.19.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現(xiàn)例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細胞是由分裂過程產(chǎn)生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的.可以把第代的遺傳設(shè)想為第次實驗的結(jié)果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數(shù)之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經(jīng)過實驗觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進行第一代雜交實驗時,假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(2)中的植物進行雜交實驗,每次雜交前都需要剔除性狀為的個體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機雜交實驗長期進行下去,會有什么現(xiàn)象發(fā)生?20.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.21.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機抽取了100名學(xué)生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學(xué)生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取8人,進一步調(diào)查他們良好的護眼習(xí)慣,在這8人中任取2人,記堅持做眼保健操的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87922.(10分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).2、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=3、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.4、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.5、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設(shè)點的坐標為,由于為定值,由正弦定理可知當(dāng)取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.6、B【解析】
因為,所以,故選B.7、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關(guān)系.8、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.9、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.10、D【解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又數(shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點睛】本題考查數(shù)列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.11、D【解析】
當(dāng)時,,∴f(x)不關(guān)于直線對稱;當(dāng)時,,∴f(x)關(guān)于點對稱;f(x)得周期,當(dāng)時,,∴f(x)在上是增函數(shù).本題選擇D選項.12、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識的考查,屬于基礎(chǔ)題.14、【解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當(dāng)時兩式相減得所以當(dāng)時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.15、【解析】
化簡得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時等號成立,故.故答案為:.【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.16、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】
(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié)∵,且是的中點,∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點,∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點睛】處理線面垂直問題時,需要學(xué)生對線面垂直的判定定理特別熟悉,運用幾何語言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學(xué)生運用空間向量處理空間中的二面角問題,培養(yǎng)了學(xué)生的計算能力和空間想象力.18、(1):,:;(2)【解析】
(1)根據(jù)點斜式寫出直線的直角坐標方程,并轉(zhuǎn)化為極坐標方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.19、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】
(1)利用相互獨立事件的概率乘法公式即可求解.(2)利用相互獨立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差數(shù)列的定義即可證出.(4)利用等差數(shù)列的通項公式可得,從而可得,再由,利用式子的特征可得越來越小,進而得出結(jié)論.【詳解】(1)即與是父親和母親的性狀,每個因子被選擇的概率都是,故出現(xiàn)的概率是,或出現(xiàn)的概率是,出現(xiàn)的概率是所以:,(或),的概率分別是,,(2)(3)由(2)知于是∴是等差數(shù)列,公差為1(4)其中,(由(2)的結(jié)論得)所以于是,很明顯,越大,越小,所以這種實驗長期進行下去,越來越小,而是子代中所占的比例,也即性狀會漸漸消失.【點睛】本題主要考查了相互獨立事件的概率乘法公式、等差數(shù)列的定義、等差數(shù)列的通項公式,考查了學(xué)生的分析能力,屬于中檔題,20、(1)43,47;(2)分布列見解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.21、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系(3)詳見解析【解析】
(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025高考數(shù)學(xué)考點剖析精創(chuàng)專題卷七-空間向量與立體幾何【含答案】
- 糖尿病視網(wǎng)膜病變病例討論(共30張課件)
- 江西省贛州市興國縣高興鎮(zhèn)高興小學(xué)-主題班會-網(wǎng)絡(luò)安全教育【課件】
- 二零二五年短視頻平臺場推廣服務(wù)協(xié)議2篇
- 第2課《濟南的冬天》課時提高練2024-2025學(xué)年語文七年級上冊
- 高績效團隊的成功秘密就在會議里!講解材料
- 四年級語文上冊第七單元習(xí)作寫信習(xí)題課件2新人教版
- 二零二五版交通事故醫(yī)療費用賠償協(xié)議3篇
- 2024年濟寧職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 2024年浙江東方職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 【課件】寒假是用來超越的!課件 2024-2025學(xué)年高中上學(xué)期寒假學(xué)習(xí)和生活指導(dǎo)班會
- 2024-2025學(xué)年北師大版數(shù)學(xué)七年級上冊期末練習(xí)卷
- 2025年山東兗礦集團公司招聘筆試參考題庫含答案解析
- 燃氣有限公司工程部管理制度匯編
- 2024年中國干粉涂料市場調(diào)查研究報告
- (自考)經(jīng)濟學(xué)原理中級(政經(jīng))課件 第二章 商品和貨幣
- ×××老舊小區(qū)改造工程施工組織設(shè)計(全面)
- GB/T 3324-2024木家具通用技術(shù)條件
- 《材料合成與制備技術(shù)》課程教學(xué)大綱(材料化學(xué)專業(yè))
- 小紅書食用農(nóng)產(chǎn)品承諾書示例
- 釘釘OA辦公系統(tǒng)操作流程培訓(xùn)
評論
0/150
提交評論