2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年遼寧省朝陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

2.

3.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

4.

5.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

6.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

7.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.18.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值9.()。A.2πB.πC.π/2D.π/4

10.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點(diǎn)

B.xo為f(x)的極小值點(diǎn)

C.xo不為f(x)的極值點(diǎn)

D.xo可能不為f(x)的極值點(diǎn)

11.

12.A.-cosxB.-ycosxC.cosxD.ycosx13.

14.

15.A.A.2B.1C.0D.-116.

17.

A.

B.

C.

D.

18.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

19.

20.下列關(guān)系正確的是()。A.

B.

C.

D.

二、填空題(20題)21.

22.23.

24.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.

25.

26.

27.28.

29.

30.y=lnx,則dy=__________。

31.

32.33.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則

34.

35.

36.

37.

38.39.40.三、計算題(20題)41.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.將f(x)=e-2X展開為x的冪級數(shù).44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.

47.

48.

49.

50.

51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.求曲線在點(diǎn)(1,3)處的切線方程.

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

54.55.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

58.求微分方程y"-4y'+4y=e-2x的通解.

59.求微分方程的通解.60.證明:四、解答題(10題)61.

62.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。

63.若y=y(x)由方程y=x2+y2,求dy。

64.一象限的封閉圖形.

65.

66.

67.

68.

69.70.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.計算

參考答案

1.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

2.C

3.C本題考查了萊布尼茨公式的知識點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

4.D解析:

5.D本題考查的知識點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項f(x)=Pn(x)eαx,當(dāng)α不為特征根時,可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項式.

當(dāng)α為單特征根時,可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時,可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

6.D

7.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

8.A本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

9.B

10.A

11.C

12.C本題考查的知識點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

13.A

14.A

15.C

16.B

17.C本題考查的知識點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

18.B本題考查的知識點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

19.C

20.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。

21.

22.

本題考查的知識點(diǎn)為定積分計算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時,u=0;當(dāng)x=1時,u=2.因此

23.

24.

25.5/2

26.3/23/2解析:

27.1+2ln2

28.

29.0

30.(1/x)dx

31.

32.33.本題考查的知識點(diǎn)為二重積分的計算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此

34.

35.6x2

36.y=-x+1

37.

解析:

38.39.本題考查的知識點(diǎn)為用洛必達(dá)法則求未定型極限.

40.1本題考查了冪級數(shù)的收斂半徑的知識點(diǎn)。

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.

46.

47.

48.

49.50.由一階線性微分方程通解公式有

51.

列表:

說明

52.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論