商務(wù)智能解決方案_第1頁
商務(wù)智能解決方案_第2頁
商務(wù)智能解決方案_第3頁
商務(wù)智能解決方案_第4頁
商務(wù)智能解決方案_第5頁
已閱讀5頁,還剩55頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Sybase/BusinessIntelligenceSYBASE數(shù)據(jù)倉庫/商務(wù)智能解決方案魏健商務(wù)智能咨詢顧問SYBASE軟件(中國)有限公司議程數(shù)據(jù)倉庫解決方案概述數(shù)據(jù)倉庫設(shè)計工具數(shù)據(jù)倉庫引擎SybaseAdaptiveServerIQMultiplex“數(shù)據(jù)倉庫是在企業(yè)管理和決策中面向主題的,集成的,與時間相關(guān)的和不可修改的數(shù)據(jù)集合”BillInmon數(shù)據(jù)倉庫定義OLTP系統(tǒng)5-10年過去詳細數(shù)據(jù)當前詳細數(shù)據(jù)輕度匯總數(shù)據(jù)高度匯總數(shù)據(jù)數(shù)據(jù)集市用戶分析網(wǎng)絡(luò)資源分析數(shù)據(jù)倉庫數(shù)據(jù)倉庫/決策分析系統(tǒng)數(shù)據(jù)倉庫是完全不同的數(shù)據(jù)庫系統(tǒng)RDBMSSybaseSAP/ERPVSAMEXCEL操作(業(yè)務(wù))系統(tǒng)特性事務(wù)處理性能是第一位的支持日常的業(yè)務(wù)事務(wù)驅(qū)動面向應(yīng)用數(shù)據(jù)是當前的并在不斷變化存儲詳細數(shù)據(jù)(每一個事件或事務(wù))針對快速預定義的事務(wù)優(yōu)化設(shè)計可預見的使用模式支持辦事人員或行政人員數(shù)據(jù)倉庫應(yīng)用系統(tǒng)特點支持長遠的業(yè)務(wù)戰(zhàn)略決策分析驅(qū)動面向主題數(shù)據(jù)是歷史的數(shù)據(jù)反映某個時間點或一段時間數(shù)據(jù)是靜態(tài)的,除數(shù)據(jù)刷新外數(shù)據(jù)是匯總的優(yōu)化是針對查詢而不是更新支持管理人員和執(zhí)行主管人員數(shù)據(jù)倉庫解決方案解決從數(shù)據(jù)庫中獲取信息的問題。INFORMATION信息信息INFORMATION什么是數(shù)據(jù)倉庫解決方案?應(yīng)用價值時間1.日常報表2.即席查詢3.分析4.數(shù)據(jù)挖掘?qū)n}應(yīng)用1234數(shù)據(jù)倉庫應(yīng)用類型數(shù)據(jù)倉庫應(yīng)用數(shù)據(jù)倉庫系統(tǒng)體系架構(gòu)RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMS

DimensionModelingConformeddimension&factIncludingatomic&aggregateArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadata數(shù)據(jù)倉庫/商務(wù)智能應(yīng)用成功的關(guān)鍵?做什么,怎么做??數(shù)據(jù)倉庫性能Sybase&Partner專專業(yè)業(yè)服服務(wù)務(wù)數(shù)據(jù)據(jù)倉倉庫庫顧顧問問咨咨詢詢IndustryWarehouseStudioSybaseIWS方方法法學學ERDesignToolImpactAnalysisMetadataManagementSybaseIndustryWarehouseStudio打打包包的的數(shù)據(jù)據(jù)倉倉庫庫基基礎(chǔ)礎(chǔ)平平臺臺概概述述業(yè)務(wù)務(wù)模型型物理理模式式元數(shù)數(shù)據(jù)據(jù)ETL工工具具例子子報表表算法法ETLToolMetadataExchangeSmartETLMaps(Future)SQLTemplatesCognosBusinessObjectsMicroStrategyBusinessModelsfocusedonKeyIndustryEventsEnterprise-wide,StarSchema-baseddesignIWS產(chǎn)品介介紹TABLETABLETABLETABLETABLEIndustry-specificDataModelsDataWarehouse“OpenRDBMS*”O(jiān)RACLE,IBM,MICROSOFT,NCR,SYBASE,etc.

BIPartnersSampleApplications

AnalyticalCRMSalesAnalysisCustomerProfilingCampaignAnalysisCustomerCareAnalysisLoyaltyAnalysisBusinessPerformanceAnalysisIndustrySpecificSampleDataGeneral-RepresentativeSystemsIntegratorsGuideProjectPlansImplementationProtocole.g.InformaticaETLToolWarehouseArchitectMulti-DimensionalDesignToolSQLSampleReportsWarehouseControlCenterMetaDataManagement客戶構(gòu)成分析營銷活動分析客戶興趣分析忠誠度分析銷售分析行業(yè)相關(guān)的經(jīng)營業(yè)績分析收益率分析EVT_TYP_ID=EVT_TYP_IDPRD_ID=PRD_IDENTY_ID=ENTY_IDENTY_ID=EMP_IDGEO_ID=GEO_IDLANGUAGE_ID=LANGUAGE_IDPRODUCT_ID=PRODUCT_IDDEMO_ID=DEMO_IDENTY_ID=V_E_ENTY_IDENTY_ID=ENTY_IDENTY_ID=F_C_ENTY_IDCOR_EVT_TYP_ID=COR_EVT_TYP_IDCOR_RPT_STRC_ID=COR_RPT_STRC_IDENTY_ID=CNTC_RSOL_EMP_IDGEO_ID=GEO_IDFNCL_SCOR_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDCOR_EVT_TXN_ID=COR_EVT_TXN_IDLANGUAGE_ID=LANGUAGE_IDCOR_EVT_TXN_SEQ_NB=COR_EVT_TXN_SEQ_NBPN_BHVR_SCOR_ID=PN_BHVR_SCOR_IDPRODUCT_ID=PRODUCT_IDDEMO_ID=DEMO_IDENTY_ID=ENTY_IDFNCL_SCOR_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDDEMO_ID=DEMO_IDPRODUCT_ID=PRODUCT_IDPN_BHVR_SCOR_ID=PN_BHVR_SCOR_IDLANGUAGE_ID=LANGUAGE_IDFNCL_SCORES_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=D_M_MEASURE_UNIT_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDGEO_ID=GEO_IDCOR_RPT_STRC_ID=COR_RPT_STRC_IDEVT_TYP_ID=COR_EVT_TYP_IDENTY_ID=F_C_ENTY_IDGEO_ID=GEO_IDLANGUAGE_ID=LANGUAGE_IDEVT_TYP_ID=EVT_TYP_IDDV_HR_EVT_TYPEEVT_TXN_ID<pk,fk>INTEGEREVT_TYP_ID<fk>INTEGEREVT_TYP_SHRT_NMCHAREVT_TYP_FULL_NMcharEVT_TYP_CAT_SHRT_NCHAREVT_TYP_CAT_FULL_NcharF_HR_EVTV_E_ENTY_ID<fk>INTEGERV_E2_ENTY_ID<fk>INTEGEREVT_DT_PRD_IDINTEGERADMIN<pk,fk>INTEGEREVT_EMP_ID<pk,fk>INTEGEREVT_EMP_DEMO<pk,fk>INTEGEREVT_ADMIN_DEMO<pk,fk>INTEGERCORE_EXT_ID<pk,fk>INTEGERCORE_RPTG_STRUC<pk,fk>INTEGERGEO_ID<pk,fk>INTEGERMU_ID<pk>INTEGERFIN_SCORE_ID<pk,fk>INTEGERLANGUAGE_ID<pk,fk>INTEGERPB_SCORE_ID<pk>INTEGERF_C_ENTY_ID<fk>INTEGERPRODUCT_ID<pk>INTEGERDEMO_ID<pk,fk>INTEGEREMP_ID<pk,fk>INTEGERCDEX_SEQ_NO<pk>INTEGERQTYintegerF_CORE_EVTCOR_EVT_TXN_ID<pk>INTEGERCOR_EVT_TYP_ID<pk,fk>INTEGERD_M_MEASURE_UNIT_ID<fk>INTEGERCOR_RPT_STRC_ID<pk,fk>INTEGERGEO_ID<pk,fk>INTEGERMEASURE_UNIT_ID<pk,fk>INTEGERFNCL_SCOR_ID<pk,fk>INTEGERLANGUAGE_ID<pk,fk>INTEGERPN_BHVR_SCOR_ID<pk,fk>INTEGERPRODUCT_ID<pk,fk>INTEGERDEMO_ID<pk,fk>INTEGERENTY_ID<pk,fk>INTEGERV_E_ENTY_ID<fk>INTEGERCOR_EVT_TXN_SEQ_NB<pk>NUMBERPRD_ID<fk>INTEGERAMOUNTNUMBERD_CORE_EVT_TYPEVT_TYP_ID<pk>INTEGEREVT_TYP_SHRT_NAMVARCHAR(15)EVT_TYP_LONG_NAMVARCHAR(35)EVT_TYP_SUBTYP_NAMVARCHAR(15)D_CORE_RPT_STRCCOR_RPT_STRC_ID<pk>INTEGERHOLDING_COMPANYVARCHAR(35)ORG_TYPEVARCHAR(20)ORG_NAMEVARCHAR(35)REGIONVARCHAR(20)SALES_TEAM_TYPEVARCHAR(15)SALES_TEAMVARCHAR(15)SALES_PERSON_NAMEcharSALES_PERSON_GRADECHARSALES_PERSON_TYPECHARCHNL_CATEGORY1char(18)CHNL_TYPECHARCHNL_SUBCATCHARCHNL_NAMEcharCHNL_CEASED_TRD_DTDATECHNL_ENTY_IDINTEGERCHNL_CITYVARCHAR(20)CHNL_POSTCODEVARCHAR(20)BEGIN_DATE_PRD_IDINTEGEREND_DATE_PRD_IDINTEGERD_GEOGRAPHYGEO_ID<pk>INTEGERALL_ENTRIESCHARPOSTAL_CODECHARVARYING(15)CITYcharPOSTAL_CD_PFXchar(3)HZRD_WTHR_AREACHARHZD_WTHR_TYPECHARDMA_CODECHARSMSA_CODECHARST_PROV_AREACHARTV_REGIONCHARNTL_RADIO_AREACHARLCL_RADIO_AREACHARREGIONCHARCOUNTRYchar(3)CONTINENTY_ABBRchar(3)GEO_SUB_CNTNT_ABBRchar(3)SMRY_EFF_DTINTEGERSMRY_END_DTINTEGERPRISN_ADRS_INDCHARD_MSR_UNITMEASURE_UNIT_ID<pk>INTEGERSHRT_DESCchar(6)LONG_DESCchar(20)D_DEMOGRAPHICSDEMO_ID<pk>INTEGERALL_ENTRIESCHARINCOME_BANDVARCHAR(50)AGE_BANDVARCHAR(50)GNDRCHARMRTL_STATCHARHIGH_VALUE_INDICATCHARACMDTN_CTGRYCHARNBR_IN_HH_BANDVARCHAR(50)CHLD_AT_HOME_BANDVARCHAR(50)SIZE_CLSCHARLEGAL_ORG_TYPECHARNBR_EMP_BANDVARCHAR(50)SECTOR_CLSCHARMAIL_PRMSN_INDCHARTELMKT_PRMSN_INDCHARD_FNCL_SCORFNCL_SCORES_ID<pk>INTEGERINTERNAL_FNCL_SCORVARCHAR(50)EXPERIAN_SCOR_BANDVARCHAR(50)SCOR_N_BANDVARCHAR(50)PRFT_IND_BANDVARCHAR(50)DEBT_INCOME_RATIONUMBERD_LANGUAGELANGUAGE_ID<pk>INTEGERISO_LANG_CODECHARISO_LANG_NAMEcharLANG_GROUPVARCHAR(20)D_PN_BHVR_SCORPN_BHVR_SCOR_ID<pk>INTEGERSCORE1_BANDVARCHAR(20)SCORE_N_BANDVARCHAR(20)D_PRODUCTPRODUCT_ID<pk,fk>INTEGERENTY_ID<fk>INTEGERPRODUCT_LINECHARPRODUCT_GROUPCHARPRODUCT_CODECHARPRODUCT_NAMECHARPD_VARIANT_CODECHARPRODUCT_VARIANTVARCHAR(35)GRP_INDV_INDCHARPD_START_PRD_IDINTEGERPD_END_PRD_IDINTEGERF_SALES_EVENTEVT_TXN_ID<fk>INTEGEREVT_TYP_ID<fk>INTEGERRPT_STRC_ID<fk>INTEGERMEASURE_UNIT_ID<fk>INTEGERFNCL_SCOR_ID<fk>INTEGERPN_BHVR_SCOR_ID<fk>INTEGERENTY_ID<fk>INTEGEREMP_ID<fk>INTEGEREVT_TXN_SEQ_NBR<fk>INTEGERF_CUS_CNTC_EVTV_E_ENTY_ID<fk>INTEGERCUS_CNTC_ID<pk>INTEGERD_C_CTCT_RSOL_ID<fk>INTEGERLGCY_SYS_CUS_CNTCINTEGERCUS_CNTC_REFcharCUS_CNTC_EVT_IDINTEGERF_C_ENTY_ID<fk>INTEGERCUS_STSF_RT_ID<fk>INTEGERCNTC_INIT_DT_IDINTEGERHOUR_ID<fk>INTEGERMINUTE_ID<fk>INTEGERINIT_CNTC_EMP<fk>charCOR_EVT_TXN_ID<fk>INTEGERCOR_EVT_TYP_ID<fk>INTEGERCOR_RPT_STRC_ID<fk>INTEGERGEO_ID<fk>INTEGERMEASURE_UNIT_ID<fk>INTEGERFNCL_SCOR_ID<fk>INTEGERLANGUAGE_ID<fk>INTEGERPN_BHVR_SCOR_ID<fk>INTEGERPRODUCT_ID<fk>INTEGERDEMO_ID<fk>INTEGERCNTC_RSOL_EMP_ID<fk>INTEGERCUS_ID<fk>INTEGERSRSNS_CUS_CO_ID<fk>INTEGERDV_EMPENTY_ID<pk,fk>INTEGERRPT_STRC_IDINTEGERGEO_IDINTEGERADR_IDINTEGEREMP_DEMO_IDINTEGEREMP_NAME_PFXCHAREMP_SNAMEVARCHAR(15)EMP_FNAMEVARCHAR(15)EMP_MNAMEVARCHAR(15)EMP_NAME_SFXCHAREMP_NTL_INS_NBRCHAREMP_HOME_TEL_NBRCHAREMP_PRIM_FAX_NBRCHAREMP_EMAIL_IDINTEGEREMP_DOBDATEEMP_GNDRCHAREMP_MRTL_STATCHAREMP_LIFE_STATCHAREMP_PREF_LANGVARCHAR(20)F_CPGN_CNTC_EVTCCE_ID<pk>INTEGERPROMO_EPSD_ID<pk>INTEGERENTY_ID<pk,fk>INTEGERCNTC_PRD_ID<pk>integerCCH_COUNT<pk>INTEGERCORE__EVT_TYPE_ID<fk>INTEGERCOR_RPTG_STRUCT_ID<fk>INTEGERGEO_ID<fk>INTEGERMU_ID<fk>INTEGERFINANCIAL_SCORE_ID<fk>INTEGERLANGUAGE_ID<fk>INTEGERPB_SCORE_ID<fk>INTEGERPRODUCT_ID<fk>INTEGERDEMO_ID<fk>INTEGEREMP_ID<fk>INTEGERCOR_EVT_TX_SEQ_NO<fk>SMALLINTTRGT_GRPchar(3)CORE_EVENTY_TYPE_IDINTEGERCNTCT_CNTRL_GRP_INCHARCCE_RESULTCHARP_PSYCH_IDINTEGERAFFILIATION_IDintPA_IDINTEGERCC_COMM_EVT_AMTdecimal(10,2)D_TIME_PERIODPRD_ID<pk>INTEGERDT_NAchar(4)DATEDATEDAY_NAMEchar(8)DAY_ABRchar(3)DAY_IN_WEEKSMALLINTDAY_IN_MONTHSMALLINTDAY_IN_YEARSMALLINTWEEK_IN_MONTHSMALLINTWEEK_IN_YEARSMALLINTCLNT_SVC_WK_IN_YRchar(18)MONTH_NAMEchar(10)MONTH_ABRchar(3)MONTH_IN_YEARSMALLINTCALENDAR_QTRchar(6)MONTH_IN_QTRSMALLINTWEEK_IN_QTRSMALLINTDAY_IN_QTRSMALLINTFINANCIAL_QTRchar(6)COMPETITOR_FSCL_YRchar(6)MONTH_IN_FNCL_QTRSMALLINTWEEK_IN_FNCL_QTRSMALLINTDAY_IN_FNCL_QTRSMALLINTSEMI_YEARLYSMALLINTYEAR_NAMEchar(18)YEAR_ABRchar(4)SEASON_NAMEchar(18)SEASON_ABRchar(6)NBR_DAYS_SINCE_90integerHOLIDAY_INDCHARXMAS_HLDY_INDCHAREASTER_HLDY_INDCHARD_CPGN_COM_EVT_TYPEVT_TYP_ID<pk,fk>INTEGERCPGN_COMM_DESCCHAR分析型CRM經(jīng)營業(yè)績管理SybaseIndustryWarehouseStudio分析型應(yīng)用框框架Time資源搜集需求理解業(yè)務(wù)線設(shè)計模式ETL模板板構(gòu)造分析需求求實施測試用戶反饋精練測試第二代倉庫典型的數(shù)據(jù)倉倉庫項目從這里開開始SybaseIWS提提供的時間間上的價值快速啟動數(shù)據(jù)據(jù)倉庫項目搜集需求理解業(yè)務(wù)線設(shè)計模式ETL模板板構(gòu)造分析查詢詢實施測試第一代倉庫SybaseIWS從這里開始IWS節(jié)省3到6個月更多的價值=更快地訪問信息SybaseIndustryWarehouseStudio

ValueProposition回回顧預先建立的業(yè)業(yè)務(wù)和物理模模型優(yōu)化了項項目進度的安安排和加快了了對數(shù)據(jù)的訪訪問基于經(jīng)過驗證證的實施經(jīng)驗驗和行業(yè)經(jīng)驗驗設(shè)計和方法論論是可擴展/可定制的安全企業(yè)范圍數(shù)據(jù)庫獨立面向行業(yè)集成的模型和和基礎(chǔ)平臺靈巧節(jié)省資源……一半的投投入節(jié)省時間……更快的實實施節(jié)省資金……降低成本本節(jié)省數(shù)據(jù)倉庫系統(tǒng)統(tǒng)體系架構(gòu)RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMSDimensionModelingConformeddimension&factIncludingatomic&aggregateArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadataAdaptiveServer??IQMultiplex?是專門為滿足足數(shù)據(jù)倉庫和和商務(wù)智能設(shè)設(shè)計的高性能能的關(guān)系數(shù)據(jù)據(jù)庫系統(tǒng)。IQMultiplex的主要特點是是:?高可擴展性–支持數(shù)以千計計的并發(fā)用戶戶存取TB級的數(shù)據(jù)。?突破性的速度度–閃電般的查詢詢速度,比傳傳統(tǒng)RDBMS快10~100倍以上。?無限的靈活性性–支持任意類型型的即席查詢詢。?最低的擁有總總成本–高效的數(shù)據(jù)壓壓縮存儲,達達到30%~60%;簡單的維護護和管理。集成的主要產(chǎn)產(chǎn)品DesignWarehouseArchitectManageSybaseASIQMIntegrateInformaticaEnterpriseConnectReplicationServerPowerMartVisualizeBo、BrioCognosSPSSAdministerWarehouseControlCenterWarehouseControlCentreSybase數(shù)據(jù)倉庫相相關(guān)產(chǎn)品集的的構(gòu)成RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMSRDBMS,StarSchemaArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadataPowerCenterPowerMartSybaseIQMSybaseIQMBrio/BOPowerMartWarehouseArchitectWCCCognos設(shè)計:成功功的關(guān)鍵數(shù)據(jù)庫的設(shè)計計對數(shù)據(jù)倉庫庫系統(tǒng)的整體體性能、裝載載和建立索引的時時間以及數(shù)據(jù)據(jù)量的增長等等的影響超過過任何其它方面面。數(shù)據(jù)倉庫設(shè)計計在支持分析和和決策的查詢詢環(huán)境中,使使業(yè)務(wù)用戶可可以訪問,理解和和利用數(shù)據(jù)以業(yè)務(wù)用戶理理解和運用信信息的方式組組織數(shù)據(jù)可預見的查詢詢方式基于時間的匯總的數(shù)據(jù)向下/上的鉆鉆?。―rill-down/drill-up)多維模型設(shè)計計傳統(tǒng)的數(shù)據(jù)建建模方法(如如ER模型)可能非非常復雜且不不易理解按照最終用戶戶的想法定義義信息(以以查詢?yōu)橹行男慕?Star(星星型),Snowflake(雪雪花型),Constellation(星座座型),Snowstorm(雪暴暴型)Facts(事實):可可度量數(shù)據(jù),,如數(shù)量、、價格Dimensions(維):用于于分類Fact的詳細數(shù)數(shù)據(jù)GroceryTransactionStoreNumberTransactionDateCustomerProductQuantityAmountCustomerCustomerFromDateToDateFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneProductProductDescriptionCategoryFactTableDimensionTablesDimensionTables多維模型:星星型模式GroceryTransactionStoreNumberTransactionDateCustomerProductQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductCategoryProductCategoryDescriptionRegionRegionDescriptionSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategory為了避免數(shù)據(jù)據(jù)冗余,用用多張表來描描述一個復雜雜維在星型模式的的基礎(chǔ)上,構(gòu)構(gòu)造維表的的多層結(jié)構(gòu)多維模型:雪雪花模式GroceryTransactionStoreNumberTransactionDateCustomerProductPurchaseQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductLineSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategoryProductPurchasesProductPurchaseDateSupplyingVendorPurchaseOrderUnitQuantityPurchaseCostVendorVendorVendorNameAddress1Address2Address3CityStateCountryPostalCodeProductInventoryProductWarehouseLocationQuantityOnHandQuantityBackOrderedWarehouseWarehouseAddress1Address2Address3CityStateCountryPostalCode具有多多個事事實表表多維模模型:星星座模模式GroceryTransactionStoreNumberTransactionDateCustomerProductPurchaseQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductLineProductCategoryProductCategoryDescriptionRegionRegionDescriptionSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategoryPromotionPeriodPromotionIdPromotionFromDateToDateProductLineProductLineIDDescriptionProductPurchasesProductPurchaseDateSupplyingVendorPurchaseOrderUnitQuantityPurchaseCostVendorVendorVendorNameAddress1Address2Address3CityStateCountryPostalCodeProductInventoryProductWarehouseLocationQuantityOnHandQuantityBackOrderedWarehouseWarehouseAddress1Address2Address3CityStateCountryPostalCode具有多個事事實表與多多層維表多維模型:雪暴模模式數(shù)據(jù)模型中中的事實和和維度事實和維的的概念對應(yīng)應(yīng)于:數(shù)據(jù)倉庫數(shù)數(shù)據(jù)庫中的的數(shù)據(jù)模型型對象星型模式((Starschema))DSS/OLAP系統(tǒng)統(tǒng)中的數(shù)據(jù)據(jù)模型對象象多維模型((Multidimensionalmodel)SalesfactSalesmeasuresTimedimensionAttributesofthe

timedimension星型模式-StarSchemaSalesCubeSalesmeasures(Metrics)TimedimensionAttributesofthe

timedimension多維模型-MultidimensionalModel數(shù)據(jù)倉庫設(shè)設(shè)計工具WarehouseArchitect為數(shù)據(jù)倉庫庫的設(shè)計提提供三大功功能:多維建模度量、維、、屬性事實表,維維表維層次表,,事實層次次表設(shè)計向?qū)Ь酆希ˋggregationWizard)分片(PartitioningWizard)逆向工程數(shù)數(shù)據(jù)源優(yōu)化代碼生生成目標數(shù)據(jù)倉倉庫引擎((IQM,,RDBMS)OLAP分析環(huán)境Timeidentifier=TimeidentifierProductidentifier=ProductidentifierCustomeridentifier=CustomeridentifierStoreidentifier=StoreidentifierCustomerCustomeridentifier<pk>doubleCustomernamechar(30)SalesFactProductidentifier<pk,fk>doubleTimeidentifier<pk,fk>doubleCustomeridentifier<pk,fk>doubleStoreidentifier<pk,fk>doubleSalestotalrealProfitsrealStoreStoreidentifier<pk>doubleStorenamechar(50)TimeTimeidentifier<pk>doubleDatetimestampMonthchar(50)QuarterdoubleYeardoubleProductProductidentifier<pk>doubleProductdescriptionchar(80)WarehouseArchitectWarehouseArchitectDataWarehouseorDataMartDatabaseOperationalSourceOLAPEngineInterfaceExternalObjectsDecisionSupport/OLAPModel

(WAMultidimensionalHierarchy)DimensionalAnalysisTransformationRelationaland/orDimensionalAnalysisDataWarehouseModel(WAM)WarehouseArchitect的支持持范圍數(shù)據(jù)倉庫設(shè)設(shè)計-小結(jié)結(jié)WarehouseArchitect對數(shù)據(jù)倉庫庫設(shè)計過程程的每一步步都提供支支持:數(shù)據(jù)源中的的元數(shù)據(jù)導導入。設(shè)計和優(yōu)化化數(shù)據(jù)倉庫庫的數(shù)據(jù)模模型(星型型模式/多多維模型))。與抽取、轉(zhuǎn)轉(zhuǎn)換工具對對接,實施施數(shù)據(jù)移動動。基于數(shù)據(jù)倉倉庫模型,,為前端DSS/OLAP工具生成所所需的數(shù)據(jù)據(jù)立方體。。為設(shè)計過程程的每一步步生成文檔檔和報告。。數(shù)據(jù)存儲、、管理挑戰(zhàn)數(shù)據(jù)規(guī)模查詢性能裝載速度易于管理存取訪問成功的關(guān)鍵鍵快速,高效效數(shù)據(jù)存儲儲技術(shù)出色的查詢詢性能-特殊的的索引技術(shù),并行行查詢可伸縮性-GB到TB級易于管理-方便便,靈活,,GUI存取訪問-數(shù)據(jù)據(jù)隨時可用用數(shù)據(jù)管理解決的方案案通用的關(guān)系系數(shù)據(jù)庫系系統(tǒng)專門的數(shù)據(jù)據(jù)倉庫服務(wù)務(wù)器SybaseIQM專門為數(shù)據(jù)據(jù)倉庫/數(shù)數(shù)據(jù)集市設(shè)設(shè)計的關(guān)系系型數(shù)據(jù)庫庫專門針對OLAP/DSS而而優(yōu)化的索索引和查詢詢處理技術(shù)術(shù)AdaptiveServerIQM數(shù)據(jù)存儲::AdaptiveServerIQM垂直存儲技技術(shù)(VerticalPartitioning)無處不索引引(IndexEVERYWHERE)專利的BitWise索引引技術(shù)跨越越Bitmap的限限制多種索引類類型:FP,LF,HNG,HG,CMP,WD低級數(shù)的限限制從100擴充到到1000數(shù)據(jù)壓縮(通常達到到原始數(shù)據(jù)據(jù)的70-75%)預連接的索索引提供額額外的顯著著提高性能能手段(JoinIndex)支持任意設(shè)設(shè)計模式星型、雪花花、雪暴、、星座模式式普通關(guān)系模模式支持任意加加載方式文件、內(nèi)部部數(shù)據(jù)、外外部數(shù)據(jù)庫庫直接加載載開放的接口口Index傳統(tǒng)RDBMSRelationalTableTypicalRDBMS數(shù)據(jù)按行存存儲數(shù)據(jù)與索引引分開存放放很少的索引引類型-B-樹普通關(guān)系數(shù)數(shù)據(jù)庫為OLTP系統(tǒng)進行優(yōu)優(yōu)化B-treeIndexbestforretrievingonerowatatime計算“NY”州A類商店的的平均銷售額額當表的記錄錄數(shù)從幾萬萬條變?yōu)榍f和上億億條時,傳統(tǒng)RDBMS技術(shù)術(shù)面對的問問題:表掃描的性性能極端低低下冗余設(shè)計代代價高昂、、查詢讀取取的無效字字段過多低級數(shù)類型型數(shù)據(jù)上索索引的失效效普通索引加加載和空間間代價,造造成不能任任意建造即席查詢的的SQL順順序?qū)π阅苣苡酗@著影影響數(shù)值型比較較和運算,,無恰當手手段加速處處理傳統(tǒng)RDBMS不適適合數(shù)據(jù)倉倉庫IQM的特特殊存儲方方式-垂直直存儲(按按列存儲))SybaseIQM:數(shù)據(jù)是按列列存儲的,,而不是按按行存儲好處:只存取查詢詢所需的數(shù)數(shù)據(jù)數(shù)據(jù)類型是是一致的,,因而可以以很容易被被壓縮數(shù)據(jù)庫易于于修改和管管理SybaseIQM:只讀完成查查詢所涉涉及到的列列計算在紐約約的“A””類商店的平均銷售售額好處:

無須使用其他的技術(shù),SybaseIQM就可以減少I/O超過90%IQM的特特殊存儲方方式-垂直直存儲(按按列存儲))“HowmanyMALESareNOTINSUREDinCALIFORNIA?GenderMMFMM-800Bytes/Row10MROWSStateNY

CA

CTMACA-RDBMSInsuredY

YNYNM Y CAM N CAF Y NYM N CA1243GenderInsuredState++11011101010110MBits10MBitsx3col/816KPage=235I/Os800Bytesx10M16KPage=500,000I/Os基本上只能能使用表掃掃描查詢過程讀讀取了太多多的無效數(shù)數(shù)據(jù)IQMExample:I/O的的明顯減減少IQM的索索引特點索引即是數(shù)數(shù)據(jù)沒有索引和和數(shù)據(jù)的分分別任何一列可可以建立多多個索引系統(tǒng)保證至至少會存在在一個索引引(FP))索引的選擇擇和設(shè)計主主要基于::數(shù)據(jù)的級數(shù)數(shù)(離散值值的個數(shù)))在查詢中的的使用方式式和SQL語語句的順序序無關(guān)索引的種類類FastProjection(FP)數(shù)據(jù)壓縮存存儲根據(jù)數(shù)據(jù)的的特點會自自動使用三三種方式中中的一種LowFast(LF)Bitmap索索引HighNonGroup(HNG)Bit-wise索索引HighGroup(HG)G-Array(包括一個個改進的B-tree)Compare(CMP)列比較Word(WD)字符串查找找FP索引有有三種內(nèi)部部形態(tài)根據(jù)數(shù)據(jù)級級數(shù)特征,,IQ自動選選擇FP中最合適適的一種表表現(xiàn)形式If級數(shù)數(shù)>65536FPindexIf級數(shù)數(shù)<256FFPIndex(Fast-FastProjection)If級數(shù)數(shù)Between256and65536FFFPIndex(Fast-Fast-FastProjection)FP形式1:FPIndex該列的級數(shù)數(shù)超過65536原始數(shù)據(jù)在在磁盤上壓壓縮存儲alphaalphabetagammabetabetaFP形式2:FFPIndex列級數(shù)<256內(nèi)部生成一一個單字節(jié)節(jié)的lookup表表不僅擁有較較好查詢效效率,同時時得到高效效壓縮DataValuesRedBlueGreenRedColorRedBlueGreen12311123332LookupTableDataFP形式3:FFFPIndex列的級數(shù)界界于256和65536之間系統(tǒng)內(nèi)建一一個雙字節(jié)節(jié)的lookup表表DataValuesRedBlueGreenRedColorRedBlueGreen12311123332LookupTableData1112333

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論