組織的經(jīng)濟(jì)學(xué)與管理學(xué)(英文)ch12-Limited-cognition-and-organisat課件_第1頁(yè)
組織的經(jīng)濟(jì)學(xué)與管理學(xué)(英文)ch12-Limited-cognition-and-organisat課件_第2頁(yè)
組織的經(jīng)濟(jì)學(xué)與管理學(xué)(英文)ch12-Limited-cognition-and-organisat課件_第3頁(yè)
組織的經(jīng)濟(jì)學(xué)與管理學(xué)(英文)ch12-Limited-cognition-and-organisat課件_第4頁(yè)
組織的經(jīng)濟(jì)學(xué)與管理學(xué)(英文)ch12-Limited-cognition-and-organisat課件_第5頁(yè)
已閱讀5頁(yè),還剩143頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy

Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches

Behaviouralhypothesis

Opportunistic

Selfinterested

Idealistic

Complete

Rationality

Limited

X

Procedural

X

X

X

FigureVI.1:PositioningofboFirmfromanevolutionaryperspective

DeelV:TreeFirmfromanevolutionarypersMakingmistakes

Forgetting

LimitedreasoningcapabilitiesMakingmistakes

Forgetting

LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:

ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:

ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker

Partitioningofsetofstates

Degreeofrationality

Human

{(R),(G),(W),(D)}

3/3=1

Pussycat

{(R,G),(W),(D)}

2/3

Mole

{(R,G,W),(D)}

1/3

Spoon

{(R,G,W,D)}

0

Figure12.1:ColourrecognitioExample:

OrganisationalstructureFunctionalDivisionalExample:

OrganisationalstrucFunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure

Product1Divisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure

Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.

However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.

InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand

self-organisationComplexityand

self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment

Figure12.5:(a)vonNeumanenExample:

SegregationGhettosExample:

SegregationGhettosSuppose

0:blue

X:greenSuppose

0:blue

X:greenFigure12.6:Startingposition

Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation

Figure12.7:StationarysituatExample:

FinanceInductive,boundedrationaldecisionmakersExample:

FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus

Collectionofbureaus

Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy

Project

Office1

Office2

Accepted

no

1-p

no

1-p

Rejected

Rejected

p

yes

yes

p

Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepowertoacceptaprojectPropertiesDecision-makingauthorityisnFigure12.15:Polyarchy

Project

Office1

Office2

Accept

no

1-p

no

1-p

Reject

p

yes

yes

p

Accept

Figure12.15:PolyarchyProjeConclusionApolyarchyisgoodatacceptingprojects,whereashierarchiesaregoodatrejectingprojects.ConclusionApolyarchyisgoodWhichorganisationalchoiceminimiseserrorsofjudgement?WhichorganisationalchoicemiTherearetwotypesofmistakes:TypeIerrorsTypeIIerrorsTherearetwotypesofmistakeFigure12.13:type-Iversustype-IIerrors

?

accept

reject

accept

?

reject

good

project

bad

project

?

desirable

decision

type-

I

error

type-

II

error

desirable

decision

Figure12.13:type-IversustyChooseapolyarchywhentype-Ierrorsarerelativelyexpensive.Ahierarchyisdesirablewhentype-IIerrorsarerelativelyexpensive.Results

Chooseapolyarchywhentype-IEvolutionaryapproachesEvolutionaryapproachesEvolutionarypsychologyClaimsregardingthecognitivecapacitiesofpeoplehavetobebasedinevolutionarybiology.EvolutionarypsychologyClaimsResult1:

GlobalrationalityItisunlikelythatglobalrationalityemergesoutofanevolutionaryprocess.Result1:

GlobalrationalityIReason1:Adaptiveoroptimalbehaviourdependstoalargeextentonthespecificsituation.Reason2:Addingmoredimensionspreventsthatevenlimitedgeneralsystemswillfunctionwell.Thisisduetocombinatorialexplosion.Reason1:Thisresultsin:modularityhierarchyparallellisationThisresultsin:Reason3:Generalsystemsdonotperformwellinspecificsituationsbecausecrucialdetailsarenottakenintoaccount.Reason3:Result2:

formfollowsfunctionThepropertiesofanevolvedsystem/mechanism/formreflectthestructureoftheproblemthathastobedealtwith.Thenatureoftheproblemdirectsthereforethekindofsolutionthatisformulated.Result2:

formfollowsfunctiExample1:

Structurefollowsstrategy(Chandler,1962)Example1:

StructurefollowsNaturalselectionresultsinmechanismsgearedtowardsusinginformationintheformitispresented.NaturalselectionresultsinmChapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy

Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches

Behaviouralhypothesis

Opportunistic

Selfinterested

Idealistic

Complete

Rationality

Limited

X

Procedural

X

X

X

FigureVI.1:PositioningofboFirmfromanevolutionaryperspective

DeelV:TreeFirmfromanevolutionarypersMakingmistakes

Forgetting

LimitedreasoningcapabilitiesMakingmistakes

Forgetting

LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:

ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:

ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker

Partitioningofsetofstates

Degreeofrationality

Human

{(R),(G),(W),(D)}

3/3=1

Pussycat

{(R,G),(W),(D)}

2/3

Mole

{(R,G,W),(D)}

1/3

Spoon

{(R,G,W,D)}

0

Figure12.1:ColourrecognitioExample:

OrganisationalstructureFunctionalDivisionalExample:

OrganisationalstrucFunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure

Product1Divisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure

Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.

However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.

InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand

self-organisationComplexityand

self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment

Figure12.5:(a)vonNeumanenExample:

SegregationGhettosExample:

SegregationGhettosSuppose

0:blue

X:greenSuppose

0:blue

X:greenFigure12.6:Startingposition

Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation

Figure12.7:StationarysituatExample:

FinanceInductive,boundedrationaldecisionmakersExample:

FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus

Collectionofbureaus

Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy

Project

Office1

Office2

Accepted

no

1-p

no

1-p

Rejected

Rejected

p

yes

yes

p

Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepow

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論