2023屆江蘇省揚州邗江區(qū)五校聯(lián)考中考聯(lián)考數(shù)學試題含答案解析_第1頁
2023屆江蘇省揚州邗江區(qū)五校聯(lián)考中考聯(lián)考數(shù)學試題含答案解析_第2頁
2023屆江蘇省揚州邗江區(qū)五校聯(lián)考中考聯(lián)考數(shù)學試題含答案解析_第3頁
2023屆江蘇省揚州邗江區(qū)五校聯(lián)考中考聯(lián)考數(shù)學試題含答案解析_第4頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆江蘇省揚州邗江區(qū)五校聯(lián)考中考聯(lián)考數(shù)學測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、測試卷卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.2.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°3.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.44.已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數(shù)根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=35.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°6.為了解某校初三學生的體重情況,從中隨機抽取了80名初三學生的體重進行統(tǒng)計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學生C.被抽取的80名初三學生的體重 D.該校初三學生的體重7.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形8.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.9.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道10.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④11.一次函數(shù)y=kx+k(k≠0)和反比例函數(shù)在同一直角坐標系中的圖象大致是()A. B. C. D.12.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.14.如圖,如果兩個相似多邊形任意一組對應頂點P、P′所在的直線都是經(jīng)過同一點O,且有OP′=k·OP(k≠0),那么我們把這樣的兩個多邊形叫位似多邊形,點O叫做位似中心,已知△ABC與△A′B′C′是關于點O的位似三角形,OA′=3OA,則△ABC與△A′B′C′的周長之比是________.15.計算:2a×(﹣2b)=_____.16.甲、乙、丙3名學生隨機排成一排拍照,其中甲排在中間的概率是_____.17.如圖,為的直徑,與相切于點,弦.若,則______.18.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點D,則∠DBC的度數(shù)是____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.(1)試判斷CD與圓O的位置關系,并說明理由;(2)若直線l與AB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.20.(6分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關于原點對稱?(3)將拋物線L平移,使其經(jīng)過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.21.(6分)如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數(shù)的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.22.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.(1)隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為;(2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網(wǎng)格內(包括邊界)的概率.23.(8分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.24.(10分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.25.(10分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.26.(12分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.求與之間的函數(shù)關系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.27.(12分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【答案解析】

直接利用反比例函數(shù)的性質分別分析得出答案.【題目詳解】A、關于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【答案點睛】此題主要考查了反比例函數(shù)的性質,正確掌握相關函數(shù)的性質是解題關鍵.2、C【答案解析】測試卷分析:根據(jù)旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點:旋轉的性質.3、C【答案解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.4、B【答案解析】測試卷分析:∵二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),∴.∴.故選B.5、A【答案解析】測試卷分析:首先根據(jù)三角形的外角性質得到∠1+∠2=∠4,然后根據(jù)平行線的性質得到∠3=∠4求解.解:根據(jù)三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較?。?、C【答案解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【題目詳解】樣本是被抽取的80名初三學生的體重,

故選C.【答案點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.7、C【答案解析】

任何多邊形的外角和是360°,用360°除以一個外角度數(shù)即可求得多邊形的邊數(shù).【題目詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【答案點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內容.8、C【答案解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質求解.【題目詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【答案點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.9、C【答案解析】

根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【題目詳解】絕對值為3的數(shù)有3,-3.故答案為C.【答案點睛】本題考查數(shù)軸上距離的意義,解題的關鍵是知道數(shù)軸上的點到原點的距離為絕對值.10、A【答案解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【題目詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【答案點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.11、C【答案解析】A、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象過二、四象限可知k<0,兩結論相矛盾,故選項錯誤;B、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象與y軸交點在y軸的正半軸可知k>0,兩結論相矛盾,故選項錯誤;C、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象過二、三、四象限可知k<0,兩結論一致,故選項正確;D、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象與y軸交點在y軸的負半軸可知k<0,兩結論相矛盾,故選項錯誤,故選C.12、C【答案解析】測試卷分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【答案解析】

利用特殊三角形的三邊關系,求出AM,AE長,求比值.【題目詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【答案點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關系.14、1:1【答案解析】分析:根據(jù)相似三角形的周長比等于相似比解答.詳解:∵△ABC與△A′B′C′是關于點O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC與△A′B′C′的周長之比是:OA:OA′=1:1.故答案為1:1.點睛:本題考查的是位似變換的性質,位似變換的性質:①兩個圖形必須是相似形;②對應點的連線都經(jīng)過同一點;③對應邊平行.15、﹣4ab【答案解析】

根據(jù)單項式與單項式的乘法解答即可.【題目詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【答案點睛】本題考查了單項式的乘法,關鍵是根據(jù)單項式的乘法法則解答.16、【答案解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.

根據(jù)題意,列出甲、乙、丙三個同學排成一排拍照的所有可能:

甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,

只有2種甲在中間,所以甲排在中間的概率是=.

故答案為;點睛:本題主要考查了列舉法求概率,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比,關鍵是列舉出同等可能的所有情況.17、1【答案解析】

利用切線的性質得,利用直角三角形兩銳角互余可得,再根據(jù)平行線的性質得到,,然后根據(jù)等腰三角形的性質求出的度數(shù)即可.【題目詳解】∵與相切于點,∴AC⊥AB,∴,∴,∵,∴,,∵,∴,∴.故答案為1.【答案點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.18、15°【答案解析】分析:根據(jù)等腰三角形的性質得出∠ABC的度數(shù),根據(jù)中垂線的性質得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點睛:本題主要考查的是等腰三角形的性質以及中垂線的性質定理,屬于中等難度的題型.理解中垂線的性質是解決這個問題的關鍵.4三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)CD與圓O的位置關系是相切,理由詳見解析;(2)AD=.【答案解析】

(1)連接OC,求出OC和AD平行,求出OC⊥CD,根據(jù)切線的判定得出即可;(2)連接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【題目詳解】(1)CD與圓O的位置關系是相切,理由是:連接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC為半徑,∴CD與圓O的位置關系是相切;(2)連接BC,∵AB是⊙O的直徑,∴∠BCA=90°,∵圓O的半徑為3,∴AB=6,∵∠CAB=30°,∴∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴∴∴【答案點睛】本題考查了切線的性質和判定,圓周角定理,相似三角形的性質和判定,解直角三角形等知識點,能綜合運用知識點進行推理是解此題的關鍵.20、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【答案解析】

(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據(jù)關于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【題目詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【答案點睛】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關鍵.21、(1);(2)P點坐標為,;(3)或或或.【答案解析】

(1)根據(jù)待定系數(shù)法把A、C兩點坐標代入可求得二次函數(shù)的解析式;

(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質可求得其面積的最大值及P點坐標;

(3)首先設出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【題目詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過、兩點的直線為,設點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【答案點睛】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.22、(1);(2)列表見解析,.【答案解析】測試卷分析:(1)一共有3種等可能的結果總數(shù),摸出標有數(shù)字2的小球有1種可能,因此摸出的球為標有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數(shù),再找出點M落在如圖所示的正方形網(wǎng)格內(包括邊界)的結果數(shù),可求得結果.測試卷解析:(1)P(摸出的球為標有數(shù)字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結果數(shù),其中點M落在如圖所示的正方形網(wǎng)格內(包括邊界)的結果數(shù)為6,∴P(點M落在如圖所示的正方形網(wǎng)格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.23、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【答案解析】

(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉90°得到對應點,順次連接即可.A′B′在旋轉過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【題目詳解】解:(1)見圖中△A′B′C′

(2)見圖中△A″B′C″

扇形的面積(平方單位).【答案點睛】本題主要考查了位似圖形及旋轉變換作圖的方法及扇形的面積公式.24、(1)見解析(2)25【答案解析】測試卷分析:(1)利用平行四邊形的性質和菱形的性質即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.測試卷解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質和面積;2.平行四邊形的性質;3.解直角三角形.25、(1)BC=BD+CE,(2);(3).【答案解析】

(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質得到CE=AF,ED=DF,設AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【題目詳解】解:(1)觀察猜想結論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論