版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Principle
of
Automatic
ControlSystem
Representation(Ch.5)浙江大學(xué)控制科學(xué)與工程學(xué)系IntroductionDetermination
of
the
overalltransferfunctionSimulation
diagramsSignal
flow
graphFrom
transfer
function
to
state
spacemodel21Simulation
diagramsSimulation
diagrams(State
variable
diagram)Phase
variablesSimulationdiagramsSimulation
diagrams
(see
P144.
5.6)Simulation
used
to
represent
the
dynamic
equations
of
asystem
may
show
the
actual
physical
variables
that
appear
inthe
system,
or
it
may
show
variables
that
are
used
purely
formathematical
convenience..The
simulation
diagram
is
similar
to
the
block
diagramused
to
represent
the
system
on
an
og
computer.The
basic
elements
used
in
simulation
diagram
are
idealintegrators,
ideal
amplifiers,
and
ideal
summers,
shown
inFig.5.16.Multipliers
and
dividers
may
be
used
for
nonlinearsystems425x2
x1dt1s2
1sX
(
s
)
1
X
(
s
)Integratorx1X1(s)Figure
5.16
Elements
used
in
simulation
diagram21x
x
dtIntegratorx1Amplifier
or
gainx1x2
Kx1Kx4
x1
x2
x3x2x3+-Summerx1
+LTSimulationdiagramsSimulation
diagrams
(seeP144.5.6)Basic
elements:
ideal
integrators,ideal
amplifiers,and
idealsummers.6LC
c
RC
c
vc(t)
edt
2
dt
dv
2
(t)
dv
(t)LCy
RCy
y
ueFig2.2yyyabub+Fig.5.17
b
R
L1L
C
Where:a
b
Let
y=vc(t),
u=ey
bu
ay
bySimulationdiagramsSimulation
diagrams
(see
P144.5.6)3SimulationdiagramsSimulation
diagrams
(seeP144.5.6)One
of
the
methods
used
to
obtain
a
simulationdiagramincludes
the
following
steps:Step
1:
Start
with
thedifferential
equationStep
2:
Rearrange
the
differential
equation
(by
order
ofderivative)Step
3:
Start
the
diagram
by
assuming
the
signal
placed
onthe
leftside
of
the
equation,is
available.
Note
the
number
ofintegratorsare
needed
to
determine
at
.Step
4:
Complete
the
diagram
by
feeding
back
the
appropriateoutputs
of
the
integrators
to
a
summer,
in
order
to
generate
theoriginal
signal
of
step
2.
Include
the
input
function
if
it
isrequired.78Step
1
&
2
:
When
y=vc
,
u=e
are
used,
rearrange
the
Eq.(2.12)
to
the
formy
bu
ay
byWhere:a
R
L1L
C
b
LCy
RCy
y
ueFig
2.2SimulationdiagramsSimulation
diagrams
(see
P144.5.6)Example.
Draw
the
simulation
diagram
for
the
RLC
circuit
ofFig.2.2.LC
c
RC
c
v
c
(
t
)
edt
2
dtdv
2
(
t
)
dv
(
t
)49Step
4
:
Completing
thesimulation
diagram
as
shown
in
Fig.
5.17byyyabub+Fig.5.17bWhere:a
R
L1L
C
b
SimulationdiagramsSimulation
diagrams
(see
P144.5.6)y
bu
ay
byStep
3
:
The
signal
y
is
integrated
twice,
as
shown
in
Fig.
5.17abelow.
bab+yu
yyy
x2y
x1y
x2
x15SimulationdiagramsSimulation
diagrams
(see
P144.
5.6)The
simulation
diagram
is
as
shown
in
Fig.5.17b.The
state
variables
are
selected
as
the
outputs
of
the
eachintegrator
in
the
simulation
diagram,
as
shown
in
the
Fig.So,
the
simulation
diagram
can
express
the
relations
of
statevariables,
which
is
called
state
variable
diagram.1011y
bu
ay
byubab+y
b
a
2
x
b
x1
0 1
x
0uy
x1y
x2y
x1y
x2
x1Simulation
diagramState
variable
diagramWhere:a
R
LL
C
1b
state
variable
diagramstate
space
model12y
x2y
x12
1y
x
xub-
a-
b+yub
ab+y
x22
1y
x
xy
x1
yFor
the
convenience,
two
forms
diagram
are
used.Where:a
R
L1L
C
b
L
LC
R
x
1
u1
0
0
2
LCx
1
x1y
x1Simulation
diagramSimulationdiagramsState
variable
diagram613State-space
Model∫∫x1=y-5-1x2u42SimulationdiagramsState
variable
diagram14Review:
state
space
modelL
R
L L
C
x
1
u
0
1
x
2
1
x
1
0y
x1andich
is
cUp
to
now,
tworepresentationsfor
expressingthe
systemstate
are
known:physical
and
phase.LCy
RCy
y
ueFig2.2
R
x
1
u1
0
0
2
LC L
LC
x
1
x1y
x1Note:same
RLC
circuit
of
Fig.2.5.(P31),
if
state
variables
are
selected
asx
1
v
c
,
wh
x
2
ialled
physical-variable
method
based
upon
theenergy-storage
elements
of
the
system,
the
state
space
model
isSo,
same
systemmay
berepresented
by
differentstatespace
model.The
difference
illustrates
thatstate
variables
are
not
unique.7Teral
block
diagram
representing
the
state
space
model
is
shownas
following.state
space
model)x(t)
Ax
(t)
Bu
(t
)y
(t
)
Cx
(t
DuState
equationOutput
equationFeedforwardmatrixSimulationdiagramsSimulation
diagrams
(see
P144.5.6)Different
sets
of
state
variables
may
be
selected
to
represent
asystem.The
selection
ofthe
state
variables
determines
the
A,
B,
C,
and
Dmatrices
of15SimulationdiagramsPhase
variables
(see
P146.
5.6)When
the
state
variables
are
the
dependent
variableand
the
derivatives
of
the
dependent
variable,
theyare
called
phase
variables.The
phase
variables
are
applicable
to
differentialequations
of
any
order
and
can
be
used
withoutdrawing
the
simulation
diagram.There
are
two
cases
required
to
consider
as
following.16817When
these
state
variables
are
usedTeral
differential
equation
that
contains
no
derivatives
of
input
isy
(
n
)
(
t
)
a
n
1
y
(
n
1)
(
t
)
a
0
y
(
t
)
uThe
state
variables
are
selected
as
the
phase
variables,
which
are.
Thus,defined
by
x1
y
(
t
)
,
x
2
x1
y(t)
,x3
x2
y(t)
,xn
xn1
y
(
n
1)
(
t)y
(
n
)
(
t
)
xn(
D
n
an
1
Dn
1
a
1
D
a
0
)
x
1
uSimulationdiagramsPhase
variables:
Case
1
(no
derivatives
in
the
input)xn
a
n
1
x
n
a
n
2
xn
1
a
1
x
2
a
0
x1
u(5.37)x
A
c
x
bcuy
cxStandard
forms:Note:subscripty
x1
1
0
0
0x1
x
0
x
0
2
x1
0
a
0
n
1
an
1
x
n
n
1
[
u
]
a1
an
2
xn
x
x2
x1
are:Companion
matrix友矩陣,能控標(biāo)準(zhǔn)形(Ac
,bc)xn
a
n
1
x
n
a
n
2
xn
1
a
1
x
2
a
0
x1
u(5.37)x
wx
w
101000010000118SimulationdiagramsPhase
variables:
Case
1
(no
derivatives
in
the
input)The
resulting
state
and
output
equations
using
phase
variables919
(c
w
Dw(
D
n
a0w
1n
11
c
w
1
D
c
D
c
)u1
0D
n
1
a
D
a
)
yY
(
s
)
cs
w
csw
1
c
s
c
w w
1
1
0U
(
s
)s
n
asn
1
a
s
an
1
1
0ux1ywc
s
w
c
s
w1
c
s
cw1
1
01s
n
a
s
n
1
a
s
an
1
1
0串聯(lián)分解Phase
variables:
Case
2
(there
are
derivatives
in
the
input)P147(5.40-5.43)的解釋20x
Ac
x
bc
uStandard
forms:Where
Ac
and
bc
arethe
same
as
Case
1.The
output
equation
is
different
from
Case
1.
it
depends
ondifferent
values
of
w:
w=n
or
w<n.xw
xw
1SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)The
differential
equation
has
the
same
form
as
Case
1,that
is(
D
n
an
1
Dn
1
a
1
D
a
0
)
x
1
uux1ywc
s
w
c
s
w1
c
s
cw1
1
01s
n
a
s
n
1
a
s
an
1
1
0串聯(lián)分解10xn
u
(
a
n
1
x
n
a
n
2
x
n
1
a
1
x
2
a
0
x
1
)y
c
n
xn
c
n
1
x
n
c
1
x
2
c
0
x1
x
n
a
n
1
x
n
a
n
2
x
n
1
a
1
x
2
a
0
x
1
u
(5.37)(1)
For
w=ny
c
w
xw
c
w
1
x
w
c
1
x
2
c
0
x11 1
ny
(c
a
c
)
(c
a
c
)
(c
a c
)
x
c
un
1
n
1
n
n
0 0
n
cx
du(5.44)21SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)22) (c1
)In
this
case,
the
output
y
reducestoy
c0
c1
cw
0
0x
cx
xw
xw
1cw
i
0,
i
1
,
2
,
,
n
wandy
(c0
(
cn
1
an
1
cn
)x
[
c
n
]u1
0w
(c
w
D
cw
1w
1n
1D
c
D
c
)u(2)
For
w<n
(
D
n
aD
n
1
a
D
a
)
y1
0SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)11
(c
D
w
cw w
1D
w
1
c
D
c
)u1
0(
D
n
a Dn
1
a
D
a
)
yn
1
1
0Differentialequation11
0
0
n
x
x
0
x1
0
n
0
1n
1
n
2
n
1
a
a2
[
u
]0
0
x
a
a
xState
spaceequations)
(c1
c1
cw
0)
(cn1
an1cn
)
uw=n
y
(c0
w<n
y
c0
0x
cxPhase
variablesxw
xw
1
x1
0100
x
2
0010
SimulationdiagramsSummary:
Phase
variablesThe
simulation
diagram
that
represents
the
system
above
is
shownin
P148Fig.5.18(w<n).23SimulationdiagramsSimulationdiagram2412Advantages:Only
two
summers
requiredDifferentiators
for
u(t)
are
avoided.(noise
accentuation)Fig.
5.18
Simulation
Diagram
for
(5.40)
with
phase
variablesSignal
flow
graphFlow-Graph
definitionsFlow-Graph
AlgebraGeneral
Flow-Graph
ysisThe
Mason
Gain
RuleState
transition
signal
flow
graph26??????Question?For
complexsystems,
the
block
diagram
method
maye
difficult
to
complete.
Ex.
as
Fig.
Below.G(s)
C(s)
G1G2G3G4G5G6
R(s) 1
G1G2G3G4G5G6H1
G2G3
H2
G4G5
H3
G3G4
H4
G2G3H2G4G5
H313Signal-Flow
Graphs
(SFG)
(see
P149
5.7)By
using
the
signal-flow
graph
model,
the
reduction(simplification)
procedure
(used
in
the
block
diagrammethod)
is
not
necessaryto
determine
the
relationshipbetween
system
variables.In
other
words,
with
signal-flow
graphmethod
,
itiseasier
to
deal
with
difficult
block
diagram.What
issignal-flow
graph?27AnSFG
isa
diagram
that
represents
a
set
of
simultaneous
equations.G(s)uySignal-Flow
Graph(SFG)
Definitions(see
P1495.7)信號(hào)流圖是由節(jié)點(diǎn)和支路組成的信號(hào)傳遞網(wǎng)絡(luò)An
SFG
consists
of
a
graph
in
which
nodes
are
connected
by
directed
branches.The
nodes
represent
each
of
systemvariables.A
branch
connected
between
two
nodes
acts
as
a
one-way
singlemultiplier:
the
direction
is
indicated
by
an
arrow
and
the
multiplicationfactor(transfer
function
or
gain)
is
placed
onthebranch.y
G
(
s
)
u28A:SFG只適用于線性系統(tǒng),而方塊圖可以適用于非線性系統(tǒng)Q:Block
Diagram和SFG的適用性?1429xabcduvyww
au
bvx
cw
c(au
bv)y
dw
d(au
bv)Signal-Flow
Graph(SFG)
Definitions(see
P1495.7)A
node
performs
two
functions:Addition
of
the
signalson
all
ing
branchesTransmission
of
the
total
node
signal
(the
sum
of
allingsignals)
to
all
out-going
branchesxabcduvywEx.
In
Fig.
above,
the
path
u-w-x
is
a
forward
path
between
the
nodes
uand
x.30A
path,
is
any
connectedsequence
of
branches
whosearrows
are
in
the
samedirection.A
forward
path
between
2
nodesis
one
that
follows
the
arrowsofsuccessive
branches
and
inwhicha
node
appears
only
once.Source
nodesSink
nodesMixed
nodes(independent
nodes)
:
have
only
outgoing
branches.(dependent
nodes)
:
have
only ingbranches.(general
nodes)Signal-Flow
Graph(SFG)
Definitions(see
P1495.7)There
are
3
types
of
nodes:15Signal-Flow
Graph(SFG)
Definitions輸入節(jié)點(diǎn)(源點(diǎn))
只有輸出支路的節(jié)點(diǎn)稱為輸入節(jié)點(diǎn)。它一般表示系統(tǒng)的輸入變量。輸出節(jié)點(diǎn)(阱點(diǎn))
只有輸入支路的節(jié)點(diǎn)稱為輸出節(jié)點(diǎn)。它一般表示系統(tǒng)的輸出變量?;旌瞎?jié)點(diǎn)既有輸入支路又有輸出支路的節(jié)點(diǎn)稱為混合節(jié)點(diǎn)。它一般表示相加點(diǎn)、分支點(diǎn)。通路
從某一節(jié)點(diǎn)開始沿支路箭頭方向經(jīng)過各相連支路到另一節(jié)點(diǎn)所構(gòu)成的路徑稱為通路。通路中各支路增益的乘積叫做通路增益。前向通路是指從輸入節(jié)點(diǎn)開始并終止于輸出節(jié)點(diǎn)且與其它節(jié)點(diǎn)相交不多于一次的通路。該通路的各增益乘積稱為前向通路增益。31Signal-Flow
Graph
Algebra
(seeP150)Original
graphxa
byzParallel
pathsxab
zEquivalent
graph
PathgainuyG1(s)G2
(s)uG1(s)+
G2
(s)ySeries
paths(cascadenodes)Original
graphxbyzaucEquivalent
graphu
aczbcxNode
absorption16Signal-Flow
Graph
Algebra
(see
P151)33feedback
loopC
GEB
HCE
R
BC
GR
GHCC
G1
GHRGeneral
Flow-Graph
ysisGenerally,
the
SFG
for
an
arbitrarily
complex
systemcan
be
represented
by
Fig.5.25a
in
P152.Note
that
all
the
source
nodes
are
brought
to
the
left,and
all
the
sink
nodes
are
brought
to
the
right.x1x2111y1y2y3y1y2y3Signal
flow
graphFig.5.25a3417x1x2Tay1y2y3Fig.5.25bTbTcTfTTdey1
Ta
x1
Td
x2y2
Tbx1
Tex2
y3
Tc
x1
Tf
x2General
Flow-Graph
ysisThe
effect
of
the
internal
nodes
can
be
factored
out
byordinary
algebraic
processes
to
yield
the
equivalent
graphrepresented
by
Fig.5.25b.The
T’s,
called
overall
graph
transmittances,
are
the
overalltransmittances
from
a
specified
source
node
to
a
specifieddependent
node.35General
Flow-Graph
ysisFor
linear
systems
the
principle
of
superposition
(線性系統(tǒng)迭加原則)can
be
used
to“solve”the
graph.
That
is,thesources
can
be
considered
one
at
a
time.
Then
the
outputsignal
is
equal
to
the
sum
of
the
contributions
produced
byeach
input.The
overall
transmittances(傳輸增益)can
be
found
by
theordinary
processes
of
linear
algebra.The
same
results
can
by
obtained
directly
from
the
SFG.The
fact
that
they
can
produce
answers
to
large
sets
oflinear
equations
by
inspection
gives
the
SFGs
their
powerand
usefulness.3618General
Flow-Graph
ysisNote
that
the
overall
transmittance
is
the
system
transfer
function.Is
it
a
general
method
that
can
be
availableto
get
system
transfer
function??Mason’s
Gain
Formula
(MGF):
1
n
n:
the
numberofthe
overalltransmittance
T
T
Ti
i
forward
pathsis
given
by
iWhereTi
is
gain
of
theith
forward
path
between
asource
and
a
sink
node
is
the
graph
determinant,
it
is
characteristic
polynomial,
too
1
L
1
L
2
L
3
n前向通路總數(shù)Δ
特征式Δi
式nTi
i
iT
1The
Mason
Gain
Rule
(see
P152-154)n:
the
number
offorward
paths
all
possiblecombinations
1
L
1
L
2
L
3
where:L1
is
the
gain
of
each
closed
path(single
loop)ΣL1
is
thesum
of
thegains
of
all
closed
paths
in
the
graph.L2
is
the
product
of
the
gain
of
2
nontouching
loops.ΣL2
is
the
sum
of
the
products
of
gains
in
all
possiblecombinations
of
nontouching
loops
taken
two
at
a
time.L3
is
the
product
of
the
gain
of
3
nontouching
loops
in
thegraph
.
………..nontouching
loops:
loops
that
don’t
have
any
common
nodes19nTi
i
iT
1The
Mason
Gain
Rule
(seeP152-154)n:
the
number
offorward
paths
1
L
1
L
2
L
3
where:Δi
isthe
cofactor(
式,余因式)of
Ti
Δi
has
the
same
form
as
Δ.It
is
the
determinant
of
the
remaining
subgraph
when
the
forward
paththat
produces
Ti
is
removed直譯:將第i條前向通路Ti移除,剩余圖的特征式(特征式求法同上)另一個(gè)等價(jià)的說法:在Δ中,將與第i條前向通路相接觸的回路除去后所余下的部分39Δi
is
equal
to
unity
when
the
forward
path
touches
all
the
loops
in
thegraph
or
when
the
graph
containsno
loops.40The
Mason
Gain
Rule
(see
P152-154)回路 通路的終點(diǎn)就是通路的起點(diǎn),并且與任何其它節(jié)點(diǎn)相交不多于一次的通路稱為回路?;芈分懈髦吩鲆娴某朔e稱為回路增益。不接觸回路一個(gè)信號(hào)流圖可能有多個(gè)回路,各回路之間沒有任何公共節(jié)點(diǎn),則稱為不接觸回路,反之稱為接觸回路。信號(hào)流圖可以根據(jù)系統(tǒng)微分方程繪制,也可以由系統(tǒng)結(jié)構(gòu)圖按照對(duì)應(yīng)關(guān)系得出。20
1
L
1
L
2
L
3
nTi
i
iT
1The
Mason
Gain
Rule
(seeP152-154)n
從輸入節(jié)點(diǎn)到輸出節(jié)點(diǎn)所有前向通路的條數(shù)Ti
從輸入節(jié)點(diǎn)到輸出節(jié)點(diǎn)第i條前向通路的增益;Δ
i
在Δ中,將與第k
條前向通路相接觸的回路除去后所余下的部分,稱為 式;∑L
1
所有各回路的回路增益之和;∑L
2
所有兩兩互不接觸回路的回路增益乘積之和;∑L
3
所有三個(gè)互不接觸回路的回路增益乘積之和;……….在回路增益中應(yīng)包含代表反饋極性的正、負(fù)符號(hào)。n:
the
number
of
forward
paths41nTi
i
iT
1The
Mason
Gain
Rule
(see
P152-154)To
get
the
overall
transfer
function
of
a
system,
signal
flowgraphs
have
the
advantage
of
providing
a
systematic
rule
(noneed
to
simplify
graph)The
rule
is
based
onCramer’sRule
for
solving
simultaneousalgebraic
equations借助于 公式,不經(jīng)任何結(jié)構(gòu)變換,便可以直接求得系統(tǒng)的傳遞函數(shù)。n:
the
number
of
forward
paths
1
L
1
L
2
L
3
422143H
3H
4H1
H
2
H
5u
yH1
(s)H
3(s)H
2
(s)H
5
(s)uyH
6
H4The
flow
graph
form
is
as
followsSolution:The
Mason
Gain
Rule:
ExamplesExample-1:
find
the
overall
transferfunction.H
644H1
(s)H
2
(s)
H
5
(s)uyH
6Example-1Path
1:
H1
(s)H
2
(s)H5
(s)Path
2
:
H1
(s)H6
(s)H
3(s)
H4Step
1:
Identify
Loop
Gains
(--
magenta
in
the
graph)Loop
1:
H1
(s)H3
(s)Loop
2
:
H1
(s)H2(s)H4
(s)Step
2:
Identify
gains
of
forward
paths
from
u
to
y
(--
green
in
thegraph)The
Mason
Gain
Rule:
Examples22The
Mason
Gain
Rule:
ExamplesH1
(s)H
2
(s)
H
5
(s)uyH
6H
3(s)
H4Step
3:
Identify
Loops
not
touching
forward
path1:
NoneStep
4:
Identify
Loops
not
touching
forward
path2:
NoneStep
5:
Compute
determinants
of
path1
and
path2i
(s)
1
loop
gains
not
touching
path
i
gain
products
of
all
possible2
nontouching
loops
not
touching
path
i
gain
products
of
all
possible
3
nontouching
loops
not
touching
path
i45Example-1the
forward
paths.
Therefore1
2
1Step
6:
Compute
the
determinant
of
thesystem(s)
1
all
loop
gains
gain
products
of
all
2
loops
that
do
not
touch
gain
products
of
all
3
loops
that
do
not
touch
(s
)
1
H1
H
3
H1
H
2
H4Step
7:
Use
Mason’s
Rule
to
get
the
overall
transfer
functionG(s)
Y
(s)
H1
H2
H5
H1
H6
U
(s)
1
H1
H3
H1
H2
H446The
Mason
Gain
Rule:
ExamplesIn
this
case,
there
are
no
loops
that
do
nottouch23Example-2:
Find
the
overall
transferfunction
of
the
system
as
Fig.(a)The
Mason
Gain
Rule:
ExamplesSolution:47L1L2L3L4Step
1:
Identify
Loop
GainsThere
are
4
loops:L1=
-G1G2H1,L2=
-G2G3H2L3=
-G1G2G3,L4=
-G1G4Where
only
L2
and
L4
nontouching,L2L4=(-G2G3H2)*(-G1G4)Step
2:
The
system
determinantΔ-
L1
-
L2
-
L3
-
L4
L2L4G1G2H1G2G3H2G1G2G3G1G4
G1G2G3G4H2Example-2:
Find
the
overall
transfer
function
of
the
system
as
Fig.(a)The
Mason
Gain
Rule:
Examples4824L1L3P1The
Mason
Gain
Rule:
ExamplesExample-2:
Find
the
overall
transfer
function
of
the
system
asFig.(a)Step
3:
Identify
gains
of
forwardpaths
from
r
to
cThere
are
two
forward
paths,
n=2.P1=G1G2G3,it
touches
each
loop,
therefore
Δ1=1.P2=G1G4
,it
does
not
touch
with
loop
2,
L2=
-G2G3H2,thenΔ2=(1+
G2G3H2)P2L
L4249L1L3P1R(s)
1
12
2G1G2G3
G1G4(1
G2G3H2
)1
G1GH1
G2G3H2
G1G2G3
G1G4
G1G2G3G4
H2P2L4L2The
Mason
Gain
Rule:
ExamplesExample-2:
Find
the
overall
transfer
function
of
the
system
as
Fig.(a)Step
4:
Get
overall
transfer
function
by
Mason’s
ruleC(s)
1(P
P
)5025511
2
5L
L
L
1i
L
RCs
RCssoThere
are
six
groups
oftwo-loops
nottouching
each
other,theyareⅠ-Ⅱ、Ⅰ-Ⅲ、Ⅰ-Ⅴ、Ⅱ-Ⅲ、Ⅲ-Ⅳand
Ⅳ-Ⅴ.ThereforeExample-3:
Find
Uc/Ur
of
the
system
as
Fig.
Below.Solution:
Step
1:
Identify
LoopGainsThere
are
5
feedback
loops,
and
the
loop
transmittances
arethe
same5
L
L
i
j6R2C
2
s2The
Mason
Gain
Rule:
ExamplesThere
is
one
set
ofthree
loops
not
touching
,that
is
Ⅰ-Ⅱ-Ⅲ,theni
j
kR3C3s3
LL
L
1
Step
2:
The
system
determinant
isR2C
2
s2
R3
C3
s3
1
1
Li
Li
Lj
Li
Lj
Lk5
6
1RCsThere
is
only
one
forward
path,
n=1.1P1
R3C3s3Example-3:
Find
Uc/Ur
of
the
system
as
Fig.Step
3:
Identify
gains
offorward
paths
from
Ur
to
UcIt
touches
each
loop,
therefore
Δ1=1.The
Mason
Gain
Rule:
Examples5226Example-3:
Find
Uc/Ur
of
the
system
asFig.1
1R3C3s3Uc
P1
Ur
1
1RCsR2C
2
s2
R3C3s3
1
R3C
3s3
R2C
2
s2
RCs
1Step
4:
Get
overall
transfer
function
by
Mason’s
ruleThe
Mason
Gain
Rule:
Examples53There
are
4
feedback
loops:L1,
L2,
L3
and
L4.
And4
setsof
two-loops
are
not
touchingeach
other:
L1L3,
L1L4,
L2L3
and
L2L4.
There
is
noneset
ofthree
loops
nottouching.27(s
)
1
L1
L2
L3
L4
L1L3
L1L4
L2
L3
L2
H4Example-4:
Find
Y(s)/R(s)
of
thesystem
as
Fig.The
Mason
Gain
Rule:
ExamplesSolutionStep
1:
Identify
Loop
GainsStep
2:
The
system
determinant
is54R(s)Y(s)Step
3:
Identify
gains
of
forward
pathsn=2:
P1=G1G2G3G4,it
does
not
touch
L3
and
L4therefore
Δ1=1-
L3
-
L4.P2=G5G6G7G8,it
does
not
touch
L1
and
L2
therefore
Δ2=1-
L1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國(guó)雙氫苯甘氨酸行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年車展展位預(yù)訂與搭建服務(wù)合同模板4篇
- 2025年個(gè)人所得稅贍養(yǎng)老人分?jǐn)倕f(xié)議范本下載8篇
- 2025至2030年中國(guó)過濾器元件數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度新能源設(shè)備采購(gòu)及配套安裝合同4篇
- 2025至2030年中國(guó)浴室花灑模具數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度學(xué)校物業(yè)安全管理與校園環(huán)境協(xié)議4篇
- 2025年度電力設(shè)備維修與定期檢查合同協(xié)議書4篇
- 2025年順位抵押權(quán)登記合同示范文本3篇
- 二零二四年度新能源汽車消費(fèi)分期擔(dān)保服務(wù)合同6篇
- 海外資管機(jī)構(gòu)赴上海投資指南(2024版)
- 山東省青島市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 墓地銷售計(jì)劃及方案設(shè)計(jì)書
- 從偏差行為到卓越一生3.0版
- 優(yōu)佳學(xué)案七年級(jí)上冊(cè)歷史
- 鋁箔行業(yè)海外分析
- 紀(jì)委辦案安全培訓(xùn)課件
- 超市連鎖行業(yè)招商策劃
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
- 【公司利潤(rùn)質(zhì)量研究國(guó)內(nèi)外文獻(xiàn)綜述3400字】
- 工行全國(guó)地區(qū)碼
評(píng)論
0/150
提交評(píng)論