版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于2.已知復數,則的虛部是()A. B. C. D.13.已知集合,,,則()A. B. C. D.4.已知集合,,則的真子集個數為()A.1個 B.2個 C.3個 D.4個5.拋物線的焦點為,點是上一點,,則()A. B. C. D.6.若復數是純虛數,則()A.3 B.5 C. D.7.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.8.將函數圖象上所有點向左平移個單位長度后得到函數的圖象,如果在區(qū)間上單調遞減,那么實數的最大值為()A. B. C. D.9.設復數滿足,則()A.1 B.-1 C. D.10.趙爽是我國古代數學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.11.已知與之間的一組數據:12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.512.幻方最早起源于我國,由正整數1,2,3,……,這個數填入方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形數陣就叫階幻方.定義為階幻方對角線上所有數的和,如,則()A.55 B.500 C.505 D.5050二、填空題:本題共4小題,每小題5分,共20分。13.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.14.已知a,b均為正數,且,的最小值為________.15.已知函數是偶函數,直線與函數的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數t的值為_________.16.己知函數,若關于的不等式對任意的恒成立,則實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.18.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.19.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,20.(12分)已知數列滿足,,,且.(1)求證:數列為等比數列,并求出數列的通項公式;(2)設,求數列的前項和.21.(12分)已知函數.(1)當時,不等式恒成立,求的最小值;(2)設數列,其前項和為,證明:.22.(10分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.2.C【答案解析】
化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【題目詳解】,,所以的虛部為.故選:C【答案點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.3.D【答案解析】
根據集合的基本運算即可求解.【題目詳解】解:,,,則故選:D.【答案點睛】本題主要考查集合的基本運算,屬于基礎題.4.C【答案解析】
求出的元素,再確定其真子集個數.【題目詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【答案點睛】本題考查集合的子集個數問題,解題時可先確定交集中集合的元素個數,解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.5.B【答案解析】
根據拋物線定義得,即可解得結果.【題目詳解】因為,所以.故選B【答案點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.6.C【答案解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【題目詳解】由z是純虛數,得且,所以,.因此,.故選:C.【答案點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.7.A【答案解析】
利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【題目詳解】,,得,..故選:.【答案點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.8.B【答案解析】
根據條件先求出的解析式,結合三角函數的單調性進行求解即可.【題目詳解】將函數圖象上所有點向左平移個單位長度后得到函數的圖象,則,設,則當時,,,即,要使在區(qū)間上單調遞減,則得,得,即實數的最大值為,故選:B.【答案點睛】本小題主要考查三角函數圖象變換,考查根據三角函數的單調性求參數,屬于中檔題.9.B【答案解析】
利用復數的四則運算即可求解.【題目詳解】由.故選:B【答案點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.10.A【答案解析】
根據幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【題目詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【答案點睛】本題考查了幾何概型的概率計算問題,是基礎題.11.D【答案解析】
利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【題目詳解】利用表格中數據,可得又,.解得故選:D【答案點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.12.C【答案解析】
因為幻方的每行、每列、每條對角線上的數的和相等,可得,即得解.【題目詳解】因為幻方的每行、每列、每條對角線上的數的和相等,所以階幻方對角線上數的和就等于每行(或每列)的數的和,又階幻方有行(或列),因此,,于是.故選:C【答案點睛】本題考查了數陣問題,考查了學生邏輯推理,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【題目詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【答案點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.14.【答案解析】
本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【題目詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【答案點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.15.【答案解析】
由是偶函數可得時恒有,根據該恒等式即可求得,,的值,從而得到,令,可解得,,三點的橫坐標,根據可列關于的方程,解出即可.【題目詳解】解:因為是偶函數,所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因為,所以,即,解得,故答案為:.【答案點睛】本題考查函數奇偶性的性質及二次函數的圖象、性質,考查學生的計算能力,屬中檔題.16.【答案解析】
首先判斷出函數為定義在上的奇函數,且在定義域上單調遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【題目詳解】解:函數的定義域為,且,函數為奇函數,當時,函數,顯然此時函數為增函數,函數為定義在上的增函數,不等式即為,在上恒成立,,解得.故答案為.【答案點睛】本題考查函數單調性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【答案解析】
(Ⅰ)取中點,連,,根據平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據三棱錐的體積公式,利用等積法,即可求解.【題目詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據三棱錐的體積公式,得.【答案點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.18.(Ⅰ)(Ⅱ)【答案解析】
(1)由拋物線的性質,當軸時,最??;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【題目詳解】解:(1)由拋物線的標準方程,,根據拋物線的性質,當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【答案點睛】本題主要考查拋物線的方程和性質和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.19.(1)列聯表見解析,有把握;(2)分布列見解析,.【答案解析】
(1)根據頻率分布直方圖補全列聯表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.【題目詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【答案點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的分布列、數學期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質等基礎知識,考查運算求解能力,屬于中檔題.20.(1)證明見解析;(2)【答案解析】
(1)根據題目所給遞推關系式得到,由此證得數列為等比數列,并求得其通項公式.然后利用累加法求得數列的通項公式.(2)利用錯位相減求和法求得數列的前項和【題目詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【答案點睛】本小題主要考查根據遞推關系式證明等比數列,考查累加法求數列的通項公式,考查錯位相減求和法,屬于中檔題.21.(1);(2)證明見解析.【答案解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【題目詳解】(1)由,得.當時,方程的,因此在區(qū)間上恒為負數.所以時,,函數在區(qū)間上單調遞減.又,所以函數在區(qū)間上恒成立;當時,方程有兩個不等實根,且滿足,所以函數的導函數在區(qū)間上大于零,函數在區(qū)間上單增,又,所以函數在區(qū)間上恒大于零,不滿足題意;當時,在區(qū)間上,函數在區(qū)間上恒為正數,所以在區(qū)間上恒為正數,不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【答案點睛】本題考查利用導數研究函數恒成立問題、證明數列不等式問題,考查學生的邏輯推理能力以及數學計算能力,是一道難題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程施工合同當中的質量檢驗標準約定
- 《薄層層析柱層析》課件
- 2025年臨汾貨物運輸駕駛員從業(yè)資格考試系統
- 2025年漢中道路貨運駕駛員從業(yè)資格證考試
- 《行政許可范圍制度》課件
- 住宅小區(qū)施工備案委托協議
- 排水系統工程合同協議書范本
- 長期購銷合同變更問題
- 花卉園藝設備租賃合同
- 舞臺表演音響租賃合同范本
- 《富馬酸盧帕他定口崩片關鍵質量屬性與標準研究》
- 走近非遺 課件 2024-2025學年湘美版(2024)初中美術七年級上冊
- 新生兒壞死性小腸結腸炎臨床診療指南解讀 課件
- 網絡數據安全管理條例
- 2024版2024年【人教版】二年級上冊《道德與法治》全冊教案
- 2024年浙江省單獨招生文化考試語文試卷(含答案詳解)
- 山東省泰安市2024屆高三上學期期末數學試題(含答案解析)
- 少兒編程獲獎課件
- 2024年《風力發(fā)電原理》基礎技能及理論知識考試題庫與答案
- 軟件開發(fā)項目監(jiān)理細則
- (必會)軍隊文職(藥學)近年考試真題題庫(含答案解析)
評論
0/150
提交評論