下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、山西省長(zhǎng)治市潞城微子鎮(zhèn)中學(xué)2023年高三數(shù)學(xué)理期末試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 設(shè)函數(shù)是定義在的非負(fù)可導(dǎo)的函數(shù),且滿(mǎn)足,對(duì)任意的正數(shù),若,則必有( ) A. B. C. D. 參考答案:A2. 實(shí)數(shù)滿(mǎn)足,則四個(gè)數(shù)的大小關(guān)系為( )A. B. C. D. 參考答案:C3. 已知等比數(shù)列的公比,且,48成等差數(shù)列,則的前8項(xiàng)和為( )A127B255C511D1023參考答案:B4. 將拋物線沿向量平移得到拋物線,則向量為A(1,2) B(1,2) C(4,2) D(4,2) 參考答案:A略5. 設(shè)是等差數(shù)列
2、的前項(xiàng)和,已知,則等于A13 B35 C49 D63 參考答案:C在等差數(shù)列中,選C.6. 已知集合A=x|x25x0,B=x|1x3xN,則集合AB的子集個(gè)數(shù)為()A8B4C3D2參考答案:B【考點(diǎn)】子集與真子集【專(zhuān)題】計(jì)算題;集合思想;定義法;集合【分析】由題意和交集的運(yùn)算求出AB,利用結(jié)論求出集合AB的子集的個(gè)數(shù)【解答】解:集合A=x|x25x0=(0,5),B=x|1x3xN=0,1,2,AB=1,2,集合AB的子集個(gè)數(shù)為22=4,故選:B【點(diǎn)評(píng)】本題考查交集及其運(yùn)算,集合的子集個(gè)數(shù)是2n(n是集合元素的個(gè)數(shù))的應(yīng)用,屬于基礎(chǔ)題7. 在框圖中,設(shè)x=2,并在輸入框中輸入n=4;ai=i
3、(i=0,1,2,3,4)則此程序執(zhí)行后輸出的S值為()A26B49C52D98參考答案:D【考點(diǎn)】程序框圖【專(zhuān)題】計(jì)算題;圖表型;數(shù)學(xué)模型法;算法和程序框圖【分析】執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的k,S的值,當(dāng)k=0時(shí)不滿(mǎn)足條件k0,退出循環(huán),輸出S的值為98【解答】解:模擬執(zhí)行程序框圖,可得第1次執(zhí)行循環(huán)體,k=3,S=3+42=11,滿(mǎn)足條件k0,第2次執(zhí)行循環(huán)體,k=2,S=2+112=24,滿(mǎn)足條件k0,第3次執(zhí)行循環(huán)體,k=1,S=1+242=49,滿(mǎn)足條件k0,第4次執(zhí)行循環(huán)體,k=0,S=0+492=98,不滿(mǎn)足條件k0,退出循環(huán),輸出S的值為98故選:D【點(diǎn)評(píng)】本題考查了
4、循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵8. 已知= A B C D參考答案:B9. 若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( )A. B. C. D. 參考答案:A10. 已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限參考答案:B二、 填空題:本大題共7小題,每小題4分,共28分11. 設(shè)函數(shù)f(x)=,若函數(shù)g(x)=f(x)2+bf(x)+c有三個(gè)零點(diǎn)x1,x2,x3,則x1x2+x2x3+x1x3=參考答案:3a4【考點(diǎn)】根的存在性及根的個(gè)數(shù)判斷【分析】設(shè)f(x)=t,根據(jù)f(x)的函數(shù)圖象得出方程f(x)=t的根的個(gè)數(shù),從而
5、得出f(x)=1,故而可求出f(x)=1的三個(gè)解,得出答案【解答】解:不妨設(shè)a1(或0a1),作出f(x)的函數(shù)圖象如圖所示:設(shè)f(x)=t,由圖象可知:當(dāng)t=1時(shí),方程f(x)=t有3解,當(dāng)t1時(shí),方程f(x)=t有2解,函數(shù)g(x)=f(x)2+bf(x)+c有三個(gè)零點(diǎn),關(guān)于t的方程t2+bt+c=0有且只有一解t=1,f(x)=1,x1,x2,x3是f(x)=1的三個(gè)解,不妨設(shè)x1x2x3,則x2=1,令loga|x1|1=1得x=1a2,x1=1a2,x3=1+a2x1x2+x2x3+x1x3=1+a2+1a2+1a4=3a4故答案為:3a412. 已知正三棱錐的側(cè)棱與底面邊長(zhǎng)相等,分
6、別為的中點(diǎn),則異面直線與所成角的大小是_。參考答案:13. 已知集合_參考答案:14. 若均為正數(shù), 且, 則的值是_參考答案:215. 橢圓為定值,且的左焦點(diǎn)為,直線與橢圓相交于點(diǎn)、,的周長(zhǎng)的最大值是12,則該橢圓的離心率是 參考答案:16. 對(duì)于函數(shù),若在其定義域內(nèi)存在,使得成立,則稱(chēng)函數(shù)具有性質(zhì)P.(1)下列函數(shù)中具有性質(zhì)P的有 , (2)若函數(shù)具有性質(zhì)P,則實(shí)數(shù)的取值范圍是 .參考答案:【知識(shí)點(diǎn)】函數(shù)中的新概念問(wèn)題; 導(dǎo)數(shù)法求最值. B1 B12 (1) ;(2),或. 解析:(1)由x=1得:,所以具有性質(zhì)P. 設(shè),h(0)=-10, ,在上有解,所以具有性質(zhì)P. 由,所以不具有性質(zhì)
7、P;(2)若函數(shù)具有性質(zhì)P,則在上 有解,令,可得h(x)在有最小值,所以或.【思路點(diǎn)撥】(1)只需分析方程xf(x)=1在函數(shù)f(x)的定義域上是否有解即可;(2)轉(zhuǎn)化為方程在上 有解,即在函數(shù)的值域上取值,用導(dǎo)數(shù)求函數(shù)的值域即可.17. 在等腰梯形ABCD中,已知ABDC,AB=2,BC=1,ABC=60,點(diǎn)E和F分別在線段BC和DC上,且=,=,則?的值為 參考答案:【考點(diǎn)】平面向量數(shù)量積的運(yùn)算 【專(zhuān)題】平面向量及應(yīng)用【分析】根據(jù)向量數(shù)量積的公式和應(yīng)用,進(jìn)行運(yùn)算求解即可【解答】解:AB=2,BC=1,ABC=60,BG=,CD=21=1,BCD=120,=,=,?=(+)?(+)=(+)
8、?(+)=?+?+?+?=21cos60+21cos0+11cos60+11cos120=1+=,故答案為:【點(diǎn)評(píng)】本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)條件確定向量的長(zhǎng)度和夾角是解決本題的關(guān)鍵三、 解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18. 已知函數(shù),其中為常數(shù)()當(dāng)時(shí),恒成立,求的取值范圍;()求的單調(diào)區(qū)間參考答案:)由得2分 令,則 當(dāng)時(shí),在上單調(diào)遞增4分 的取值范圍是6分()則8分 當(dāng)時(shí),是減函數(shù)時(shí),是增函數(shù)11分 當(dāng)時(shí),是增函數(shù)綜上;當(dāng)時(shí),增區(qū)間為,減區(qū)間為;當(dāng)時(shí),增區(qū)間為15分19. (本題滿(mǎn)分14分)設(shè)函數(shù)(I)求函數(shù)的最小值;( II)已知AAB
9、C內(nèi)角,A,B,C的對(duì)邊分別為a,bc,滿(mǎn)足且,求a,b的值,參考答案:20. 定義在D上的函數(shù)f(x)如果滿(mǎn)足:對(duì)任意xD,存在常數(shù)M0,都有|f(x)|M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界已知函數(shù)(1)m=1時(shí),求函數(shù)f(x)在(,0)上的值域,并判斷f(x)在(,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;(2)若函數(shù)f(x)在0,1上是以3為上界的有界函數(shù),求m的取值范圍參考答案:【考點(diǎn)】函數(shù)恒成立問(wèn)題 【專(zhuān)題】計(jì)算題;新定義【分析】(1)當(dāng)m=1時(shí),=,易求值域f(x)(0,1),并判斷為f(x)在(,0)上是為有界函數(shù)(2)若函數(shù)f(x)在0,1上是以3為上界的
10、有界函數(shù),則有|f(x)|3在0,1上恒成立轉(zhuǎn)化為不等式(組)恒成立問(wèn)題解:(1)當(dāng)m=1時(shí),=x0,02x1,f(x)(0,1),滿(mǎn)足|f(x)|1,f(x)在(,0)上是為有界函數(shù)(2)若函數(shù)f(x)在0,1上是以3為上界的有界函數(shù),則有|f(x)|3在0,1上恒成立3f(x)3,即33,化簡(jiǎn)得,即上面不等式組對(duì)一切x0,1都成立,故取,即m2或m【點(diǎn)評(píng)】本題主要考查函數(shù)值域求解,恒成立問(wèn)題考查轉(zhuǎn)化、計(jì)算能力21. (本小題滿(mǎn)分14分)設(shè)函數(shù).(1)若,求的最小值;(2)若當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍.參考答案:解:(1)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)減小,在上單調(diào)增加故的最小值為(2),.當(dāng)時(shí),所以在上遞增,而,所以,所以在上遞增,而,于是當(dāng)時(shí),.當(dāng)時(shí),由得當(dāng)時(shí),所以在上遞減,而,于是當(dāng)時(shí),所以在上遞減,而,所以當(dāng)時(shí),.綜
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)注三年級(jí)孩子的個(gè)性化發(fā)展:班主任工作計(jì)劃
- 【名師一號(hào)】2020-2021學(xué)年高中英語(yǔ)(人教版)必修一雙基限時(shí)練6
- 【先學(xué)后教新思路】2020高考物理一輪復(fù)習(xí)-教案5-電學(xué)設(shè)計(jì)性實(shí)驗(yàn)的處理
- 2025年八年級(jí)統(tǒng)編版語(yǔ)文寒假?gòu)?fù)習(xí) 專(zhuān)題03 文言文閱讀(考點(diǎn)剖析+對(duì)點(diǎn)訓(xùn)練)
- 2021高考化學(xué)考前沖刺40天練習(xí):專(zhuān)題3-氧化還原反應(yīng)1
- 江蘇省揚(yáng)州市江都區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期1月期末歷史試題(含答案)
- 二年級(jí)蝸牛爬井詳細(xì)解題思路
- 八年級(jí)下英語(yǔ)單詞
- 2024-2025學(xué)年內(nèi)蒙古呼倫貝爾市扎蘭屯市九年級(jí)(上)期末英語(yǔ)試卷(含答案)
- 【創(chuàng)新設(shè)計(jì)】2021高考化學(xué)(江蘇專(zhuān)用)二輪專(zhuān)題提升練:第4講-物質(zhì)結(jié)構(gòu)和元素周期律(含新題及解析)
- 朗誦社團(tuán)活動(dòng)教案
- 宜賓市翠屏區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末地理試題
- 七年級(jí)歷史下冊(cè)教學(xué)工作計(jì)劃
- 汽車(chē)智能座艙交互體驗(yàn)測(cè)試評(píng)價(jià)規(guī)程
- 熱工基礎(chǔ)課后答案超詳細(xì)版(張學(xué)學(xué))
- 食品工藝學(xué)(魯東大學(xué))智慧樹(shù)知到期末考試答案2024年
- 工地食堂經(jīng)營(yíng)方案及計(jì)劃書(shū)
- 2024年汽車(chē)駕駛員高級(jí)證考試題庫(kù)及答案
- 正畸計(jì)劃書(shū)模板
- 空中交通管制基礎(chǔ)
- 供應(yīng)商競(jìng)價(jià)比價(jià)表
評(píng)論
0/150
提交評(píng)論