




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 /17圓錐曲線設(shè)而不求法典型試題在求解直線與圓錐曲線相交問(wèn)題,特別是涉及到相交弦問(wèn)題,=J最值問(wèn)題,定值問(wèn)題的時(shí)候,采用“設(shè)點(diǎn)代入”(即“設(shè)而不求”)法可以避免求交點(diǎn)坐標(biāo)所帶來(lái)的繁瑣計(jì)算,同時(shí)還要與韋達(dá)定理,中點(diǎn)公式結(jié)合起來(lái),使得對(duì)問(wèn)題的處理變得簡(jiǎn)單而自然,因而在做圓錐曲線題時(shí)注意多加訓(xùn)練與積累1.通常情況下如果只有一條直線,設(shè)斜率相對(duì)容易想一些,或者多條直線但是直線斜率之間存在垂直,互為相反數(shù)之類也可以設(shè)斜率需要注意的是設(shè)斜率的時(shí)候需要考慮:(1)斜率是否存在(2)直線與曲線必須有交點(diǎn)也就是判別式必須大于等于0這種設(shè)斜率最后利用韋達(dá)定理來(lái)計(jì)算并且最終消參法,思路清晰,計(jì)算量大,特別需要仔細(xì)
2、,但是大多也是可以消去高次項(xiàng),故不要怕大膽計(jì)算,最終一定能得到所需要的結(jié)果。2.設(shè)點(diǎn)比較難思考在于參數(shù)多,計(jì)算起來(lái)容易信心不足,但是在對(duì)于定點(diǎn)定值問(wèn)題上,只要按題目要求計(jì)算,將相應(yīng)的參數(shù)互帶,然后把點(diǎn)的坐標(biāo)帶入曲線方程最終必定能約分,消去參數(shù)。這種方法靈活性強(qiáng),思考難度大,但是計(jì)算簡(jiǎn)單。例1:已知雙曲線x2-y2/2=1,過(guò)點(diǎn)M(1,1)作直線L,使L與已知雙曲線交于QQ2兩點(diǎn),且點(diǎn)M是線段QQ2的中點(diǎn),問(wèn):這樣的直線是否存在?若存在,求出L的方程;若不存在,說(shuō)明理由。解:假設(shè)存在滿足題意的直線L,設(shè)Q1(X1,Y1),Q2(X2,Y2)代人已知雙曲線的方程,得X12-y2/2=1,X2-y2
3、/2=11122-,得(X-X)(x+x)-(y-y)(y+y)/2=0。21212121當(dāng)x1=x2時(shí),直線L的方程為x=1,此時(shí)L與雙曲線只有一個(gè)交點(diǎn)(1,0)不滿足題意;當(dāng)x1#x2時(shí),有(y2-y1)/(X2-x1)=2(X2+x1)/(y2+y1)=2.故直線L的方程為y-1=2(x-1)檢驗(yàn):由y-1=2(x-1),x2-y2/2=1,得2x2-4x+3=0,其判別式/=-80,此時(shí)L與雙曲線無(wú)交點(diǎn)。綜上,不存在滿足題意的直線1、設(shè)F、F分別是橢圓蘭+蘭=1的左、右焦點(diǎn).1254若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求PF-PF的最大值和最小值;12是否存在過(guò)點(diǎn)A(5,0)的直線l與橢圓交于不
4、同的兩點(diǎn)C、D,使得|FC|=|FD|?若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.222、已知平面上一定點(diǎn)C(4,0)和一定直線l:x二1,P為該平面上一動(dòng)點(diǎn),作PQ丄l,垂足為Q,且(PC+2PQ)(PC-2PQ)二0.問(wèn)點(diǎn)P在什么曲線上?并求出該曲線的方程;設(shè)直線l:y二kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k使得以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說(shuō)明理由.3、已知橢圓C的方程為一+y2=1,雙曲線C的左、右焦點(diǎn)分別為C的左、右1421頂點(diǎn),而c的左、右頂點(diǎn)分別是q的左、右焦點(diǎn).求雙曲線c的方程;12若直線l:y=kx+遼與橢圓
5、C及雙曲線C都恒有兩個(gè)不同的交點(diǎn),且12l與C的兩個(gè)交點(diǎn)A和B滿足OA-OBb0)的左頂點(diǎn)a2b2A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S和橢圓C上位于x軸上方的動(dòng)點(diǎn),直線,AS,BS與直線l:x二10分別交于M,N兩點(diǎn)。(I)求橢圓C的方程;練習(xí)7已知點(diǎn)A(x,y),B(x,y)(xx豐0)是拋物線y2=2px(p0)上的兩112212個(gè)動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),向量OA,OB滿足OA+OB=OA-OB.設(shè)圓C的方程為x2+y2-(x+x)x-(y+y)y=0_一.一.一.一.1212證明線段AB是圓C的直徑;當(dāng)圓C的圓心到直線X-2Y=0的距離的最小值為蘭時(shí),求p的值5答案:練習(xí)11、解:(1)易
6、知a=抒,b二2,c二1,.F二(1,0),F(1,0)12設(shè)P(x,y),則PF-PF=(1x,y)-(1x,y)=x2+y2一11241x2+4一x2一1=x2+355xep5,*5,當(dāng)x=0,即點(diǎn)P為橢圓短軸端點(diǎn)時(shí),PF-PF有最小值3;12當(dāng)x=梟,即點(diǎn)P為橢圓長(zhǎng)軸端點(diǎn)時(shí),PF-PF有最大值412(II)假設(shè)存在滿足條件的直線l易知點(diǎn)A(5,0)在橢圓的外部,當(dāng)直線l的斜率不存在時(shí),直線l與橢圓無(wú)交點(diǎn),所在直線l斜率存在,設(shè)為k直線l的方程為y=k(x5)x2y2由方程組十飛T,得(5k2+4)x250k2x+125k220=0、y=k(x5)依題意A=20(1680k2)0,得fk當(dāng)
7、一空k0,即4k2-4(3-k2)(-13)0,解得k空(9分)22若以AB為直徑的圓過(guò)D(0,-2),則AD丄BD,k-k=-1,ADBDy+21x1y+22x210分)(y+2)(y+2)+xx二0n(kx+3)(kx+3)+xx二0,12121212TOC o 1-5 h z207:(k2+1)xx+3k(x+x)+9=0n(k2+1)(-)+3kF9=0.(12分)12123-k23-k2解得k2=7.k=衛(wèi)e(-並衛(wèi)),故滿足題意的k值存在,且k值為土衛(wèi).842243解:(I)設(shè)雙曲線C的方程為皂一22=1,則a2=4-1=3,再由a2+b2=c2得b2=1.2a2b2故C的方程為-
8、y2=1.23(II)將y=kx+0,19 /17將y=kx+丫2代入+-y2=1得(1一3k2)x2-62kx-9=0.由直線l與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A,B得1-3k2豐0,0.V2即k2豐1且k21.3A(x,y),B(x,y),則x+xAABBAB6邁k,x-x1-3k2AB-91-3k2由OA-OB6得xx+yy13或k21.153由、得1k21或13k2nQ為PN的中點(diǎn)且GQ丄PNGQPN=0故k的取值范圍為(-1,-*1|)u(耳,-2)u(2)u:1|,1)nGQ為PN的中垂線n|PG|=|GN|GN|+|GM|=|MP|=6,故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸
9、長(zhǎng)a=3,半焦距c=翕,短半軸長(zhǎng)b=2,點(diǎn)G的軌跡方程是x2+5分 /17(2)因?yàn)镺S二OA+OB,所以四邊形OASB為平行四邊形x=2!25y=7分若存在l使得丨OS1=1ABI,則四邊形OASB為矩形OA-OB=0若l的斜率不存在,直線l的方程為x=2,由x=2x2y2得0,與OA-OB=0矛盾,故l的斜率存在.設(shè)l的方程為y=k(x-2),A(x,y),B(x,y)1122y=k(x-2)由0,故可設(shè)直線AS的方程為y=k(x+2),1016k從而M(亍,刁)y=k(x+2)由0,.MN1=3;16k1;33k=8=3+3k-2當(dāng)且僅當(dāng)T6k=丄,即k=T時(shí)等號(hào)成立3k4k=T時(shí),線段
10、MN的長(zhǎng)度取最小值-435解析:證明1:OA+OB=OA-OB,.(OA+OB)i=(OA-OB)2OA2+2OA-OB+OB2=OAlOA-OBOB2整理得:OA-OB=0設(shè)M(x,y)是以線段AB為直徑的圓上的任意一點(diǎn),則MA-MB=0即(x-xi)(x-Xi)+(y-(y-yi)=012故線段AB是圓C的直徑整理得:x2+y2-(x+x)x-(y+y)y=012證明2:OA+OB二OA-OB,二(OA+OB)2二(OA-OB)2OA2+2OA-OBOBOATOAOBOB2整理得:OA-OB=0TOC o 1-5 h zx-x+y-y=0(1)12tl設(shè)(x,y)是以線段AB為直徑的圓上則
11、即二二=-1(x豐x,x豐x)x-xx-x1221去分母得:(xx)(xx)+(yy)(yy)=01212點(diǎn)(x,y),(x,y),(x,y)(x,y)滿足上方程,展開(kāi)并將(1)代入得:11122122x2+y2(x+x)x(y+y)y=01212故線段AB是圓C的直徑證明3:OA+OB二OA-OB,二(OA+OB)2二(OA-OB)2TOC o 1-5 h zOA2+2OA-OBPBOAOAOB2整理得:OA-OB=0 x-x+y-y=0(1)122*以線段AB為直徑的圓的方程為(x-二二)2+(y-2y2)2二T(x-x)2+(y-y)22241212展開(kāi)并將(1)代入得:x2+y2(x+
12、x)x(y+y)y=01212故線段AB是圓C的直徑(II)解法1:設(shè)圓C的圓心為C(x,y),則x+xx=T22y+yy二t22y2=2px,y2=2px(p0)1122y2y2xx=2-124p2叮y2=-4p當(dāng)y=p時(shí),d有最小值告由題設(shè)得占解法2:設(shè)圓C的圓心為C(x,y),則x+xx=T2-2y+yy=t2y2=2px,y2=2px(p0)1122x+x1,、1yyx=T=笳(yi2+y22)=石(yi2+y22+2yiy2)苛=丄(y2+2p2)p所以圓心的軌跡方程為y2=px2p2設(shè)圓心C到直線x-2y=0的距離為d,則=Iy22py+2p21dIx2yIIp(y2+2p2)-2
13、y1d=廠51(yp)2+p21y2y2*y2_4pPx-x豐O,.y-y豐01212匚y2=-4p2x+x1,、1yyx=T二石(l2+y22)二石(yi2+y22+2yi叮一需-(y2+2p2)p所以圓心的軌跡方程為y2-px-2p2設(shè)直線x-2y+m=0到直線x-2y=0的距離為仝5,則5m-2因?yàn)閤-2y+2=0與y2-px-2p2無(wú)公共點(diǎn),2y=0的距離最所以當(dāng)x-2y-2=0與y2-px-2p2僅有一個(gè)公共點(diǎn)時(shí),該點(diǎn)到直線小值為255Jx-2y-2-0(2)Iy2-px-2p2將(2)代入(3)得了2-2py+2p22p-0/.A-4p2一4(2p2一2p)-0p0:p2.解法3:設(shè)圓C的圓心為C(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級(jí)上冊(cè)數(shù)學(xué)教案- 1.6圓的面積(一) 北師大版
- 合同制消防員報(bào)名表(2025年版)
- 一年級(jí)上冊(cè)數(shù)學(xué)教案-小雞吃食 10的加減法-北師大版
- 統(tǒng)編版語(yǔ)文一年級(jí)下冊(cè)第一單元1春夏秋冬 公開(kāi)課一等獎(jiǎng)創(chuàng)新教案(2課時(shí))
- 2025年??诮?jīng)濟(jì)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及參考答案
- 2024年液位傳感器項(xiàng)目資金籌措計(jì)劃書代可行性研究報(bào)告
- 2025年湖南省株洲市單招職業(yè)適應(yīng)性測(cè)試題庫(kù)帶答案
- 2025年度學(xué)校代課教師教學(xué)資源共享平臺(tái)建設(shè)合同
- 2025年度客戶信息保密外包服務(wù)合同
- 2025年度電信服務(wù)合同單方違約解除賠償倍數(shù)計(jì)算標(biāo)準(zhǔn)合同
- 羽毛球課件教學(xué)課件
- 多重耐藥菌的預(yù)防及護(hù)理課件
- 抽水蓄能電站課件
- GB/T 25052-2024連續(xù)熱浸鍍層鋼板和鋼帶尺寸、外形、重量及允許偏差
- 河北科大項(xiàng)目實(shí)施計(jì)劃書
- 消防設(shè)施操作和維護(hù)保養(yǎng)規(guī)程
- -精益與智能工廠三年規(guī)劃
- 中醫(yī)基礎(chǔ)理論(一)
- 中小學(xué)校園安全教育主題班會(huì)課件:筑牢安全紅線、守護(hù)校園平安
- 高空作業(yè)考試題(帶答案)
- 北師大版數(shù)學(xué)八年級(jí)上冊(cè)1.1探索勾股定理 同步練習(xí)【基礎(chǔ)版】(附答案解析)
評(píng)論
0/150
提交評(píng)論