版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1設(shè),集合,則()ABCD2已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為( )ABC3D53已知是過拋物線焦點(diǎn)的弦,是原點(diǎn),則( )A2B4C3D34已知三棱錐且平面,其外接球體積為( )ABCD5一個(gè)幾何體的三視圖如圖所
2、示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為( ) ABCD6過雙曲線 的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為( )ABCD7函數(shù),的部分圖象如圖所示,則函數(shù)表達(dá)式為( )ABCD8已知命題,;命題若,則,下列命題為真命題的是()ABCD9在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),若,則的最小值為( )AB2C3D10一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則( )ABCD11已知正項(xiàng)等比數(shù)列的前
3、項(xiàng)和為,則的最小值為( )ABCD12設(shè)(是虛數(shù)單位),則( )AB1C2D二、填空題:本題共4小題,每小題5分,共20分。13如圖,在矩形中,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為_.14某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為_;經(jīng)過前后兩次燒制
4、后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為_.15已知,滿足約束條件則的最大值為_.16如圖是一個(gè)幾何體的三視圖,若它的體積是,則_ ,該幾何體的表面積為 _三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍18(12分)已知曲線:和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長(zhǎng)度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.19(12分)在四棱錐的底面是菱形, 底面, 分別是的中點(diǎn), .()求證
5、: ;()求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.20(12分)已知,點(diǎn)分別為橢圓的左、右頂點(diǎn),直線交于另一點(diǎn)為等腰直角三角形,且.()求橢圓的方程;()設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),總使得為銳角,求直線斜率的取值范圍.21(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,求證:常數(shù);(2)設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.22(10分)已知函數(shù), (1)當(dāng)x0時(shí),f(x)h(x)恒成立,求a的取值范圍;(2
6、)當(dāng)x0時(shí),研究函數(shù)F(x)=h(x)g(x)的零點(diǎn)個(gè)數(shù);(3)求證:(參考數(shù)據(jù):ln1.10.0953)參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】先化簡(jiǎn)集合A,再求.【詳解】由 得: ,所以 ,因此 ,故答案為B【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算推理能力.2C【解析】由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題3D【解析】設(shè),設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),
7、故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵 .4A【解析】由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.5C【解析】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案【詳解】由已知中的三視圖,可知
8、該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀6C【解析】由題意可得雙曲線的漸近線的方程為.為線段的中點(diǎn),則為等腰三角形.由雙曲線的的漸近線的性質(zhì)可得,即.雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出 ,代入公式;只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取
9、值范圍)7A【解析】根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,即,解得,因?yàn)椋裕?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.8B【解析】解:命題p:x0,ln(x+1)0,則命題p為真命題,則p為假命題;取a=1,b=2,ab,但a2b2,則命題q是假命題,則q是真命題pq是假命題,pq是真命題,pq是假命題,pq是假命題故選B9B【解析】由,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)?,所以因?yàn)椋c(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,
10、所以的最小值為1故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10B【解析】根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.11D【解析】由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算
11、求解能力,屬于中檔題.12A【解析】先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出【詳解】,故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)題意,畫出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:
12、.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.140.38 0.9 【解析】考慮恰有一件的三種情況直接計(jì)算得到概率,隨機(jī)變量的可能取值為,計(jì)算得到概率,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,.故隨機(jī)變量的可能取值為,故;.故.故答案為:0.38 ;0.9.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.151【解析】先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值【詳解】解:
13、由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長(zhǎng)為的正方形,平面平面,并且,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長(zhǎng),表面積是考點(diǎn):1三視圖;2幾何體的表面積三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17【解析】先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因?yàn)殛P(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點(diǎn)睛】本題主要考查一元二次方程根的分布問題,熟記二
14、次函數(shù)的特征即可,屬于常考題型.18(1),;(2)1.【解析】(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡(jiǎn)為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點(diǎn)的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點(diǎn)的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,的極坐標(biāo)方程為,把代入得,.把代入得,.,即,兩點(diǎn)間的距離為1.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為
15、普通方程,以及在極坐標(biāo)系中求兩點(diǎn)之間的距離,屬綜合基礎(chǔ)題.19()見解析; (); ()見解析.【解析】()由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;()建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;()假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】()由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,()由題意結(jié)合菱形的性質(zhì)易知,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所
16、成角為,則.()由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20();().【解析】()由題意可知:由,求得點(diǎn)坐標(biāo),即可求得橢圓的方程;()設(shè)直線,代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線斜率的取值范圍【詳解】解:()根據(jù)題意是等腰直角三角形,設(shè)由得則代入橢圓方程得橢圓的方程為()根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與
17、橢圓有兩個(gè)不同的交點(diǎn)則即得又為銳角則即 由得或故直線斜率可取值范圍是【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,韋達(dá)定理,考查計(jì)算能力,屬于中檔題21(1)證明見解析;(2);.【解析】(1)設(shè)過的直線交拋物線于,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡(jiǎn)即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,聯(lián)立方程組,得:.于是,有:,又,;(2)由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:. ,又點(diǎn)在拋物線上,得,又,;由題
18、得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得 于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則, 即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.22(1);(2)見解析;(3)見解析【解析】(1)令H(x)=h(x)f(x)=ex1aln(x+1)(x0),求得導(dǎo)數(shù),討論a1和a1,判斷導(dǎo)數(shù)的符號(hào),由恒成立思想可得a的范圍;(2)求得F(x)=h(x)g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F(x)的單調(diào)性,討論a1,a1,F(xiàn)(x)的單調(diào)性和零點(diǎn)個(gè)數(shù);(3)由(1)知,當(dāng)a=1時(shí),ex1+ln(x+1)對(duì)x0恒成立,令;由(2)知,當(dāng)a=1時(shí),對(duì)x0恒成立,令,結(jié)合條件,即可得證【詳解】()解:令H(x)=h(x)f(x)=ex1aln(x+1)(x0),則,若a1,則,H(x)0,H(x)在0,+)遞增,H(x)H(0)=0,即f(x)h(x)在0,+)恒成立,滿
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高校與企業(yè)合作協(xié)議教授聘請(qǐng)合同范本3篇
- 2025版木門企業(yè)安全生產(chǎn)責(zé)任書合同范本2篇
- 2025年分期付款運(yùn)動(dòng)服裝合同
- 2025年分期室內(nèi)設(shè)計(jì)服務(wù)合同
- 跨國(guó)集團(tuán)2025年度全球營(yíng)銷戰(zhàn)略合同2篇
- 2025年版?zhèn)€人汽車買賣合同示范文本3篇
- 2025年汽車配件贈(zèng)與協(xié)議
- 二零二五年敬老院養(yǎng)老用品銷售與售后服務(wù)合同規(guī)范3篇
- 2025版教育培訓(xùn)機(jī)構(gòu)合作協(xié)議樣本3篇
- 2025版學(xué)生實(shí)訓(xùn)基地實(shí)習(xí)就業(yè)保障服務(wù)合同3篇
- 《社會(huì)工作實(shí)務(wù)》全冊(cè)配套完整課件3
- 單位違反會(huì)風(fēng)會(huì)書檢討書
- 2024年4月自考00832英語(yǔ)詞匯學(xué)試題
- 《電力用直流電源系統(tǒng)蓄電池組遠(yuǎn)程充放電技術(shù)規(guī)范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化運(yùn)維服務(wù)信息化運(yùn)維方案
- 汽車修理廠員工守則
- 公安交通管理行政處罰決定書式樣
- 10.《運(yùn)動(dòng)技能學(xué)習(xí)與控制》李強(qiáng)
- 冀教版數(shù)學(xué)七年級(jí)下冊(cè)綜合訓(xùn)練100題含答案
- 1神經(jīng)外科分級(jí)護(hù)理制度
評(píng)論
0/150
提交評(píng)論