版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1是拋物線上一點(diǎn),是圓關(guān)于直線的對(duì)稱圓上的一點(diǎn),則最小值是( )ABCD2已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則( )ABCD3用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不
2、出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是( )A48B60C72D1204已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )ABCD5過點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為( )ABC或D或6點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為( )ABCD7已知三棱錐的體積為2,是邊長(zhǎng)為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為( )ABCD8已知集合,若AB,則實(shí)數(shù)的取值范圍是( )ABCD9已知雙曲線的左焦點(diǎn)為,直線經(jīng)過點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交
3、于不同的兩點(diǎn),若,則該雙曲線的離心率為( )ABCD10在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為ABCD12已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知等邊三角形的邊長(zhǎng)為1,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為_14在一塊土地上種植某種農(nóng)作物,連續(xù)5年
4、的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是_噸.15數(shù)學(xué)家狄里克雷對(duì)數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:的值域?yàn)?其中正確的結(jié)論是_(寫出所有正確的結(jié)論的序號(hào))16已知數(shù)列滿足,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在中,的角平分線與交于點(diǎn),.()求;()求的面積.18(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.19(12分)己知,.(1)求證:;(2)若,求證:.20(12分)已知數(shù)列滿足,且.(1)
5、求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.22(10分)設(shè)函數(shù)f(x)=ax2alnx,g(x)=,其中aR,e=2.718為自然對(duì)數(shù)的底數(shù).()討論f(x)的單調(diào)性;()證明:當(dāng)x1時(shí),g(x)0;()確定a的所有可能取值,使得f(x)g(x)在區(qū)間(1,+)內(nèi)恒成立.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】求出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對(duì)稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最
6、小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對(duì)稱圓的方程為,設(shè)點(diǎn),則,當(dāng)時(shí),取最小值,因此,.故選:C.【點(diǎn)睛】本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計(jì)算,同時(shí)也考查了兩圓關(guān)于直線對(duì)稱性的應(yīng)用,考查計(jì)算能力,屬于中等題.2C【解析】根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,解得,所以,所以,所以.故選:C.【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計(jì)算能力.3A【解析】對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解
7、】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。4B【解析】利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分 三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè) ,則有且只有一個(gè)實(shí)數(shù)根.當(dāng) 時(shí),當(dāng) 時(shí), ,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得 ,則 是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),此時(shí)函數(shù)有無(wú)數(shù)個(gè)零點(diǎn),不符合題意;當(dāng) 時(shí),當(dāng) 時(shí),此時(shí) 最小值為 ,結(jié)合圖象可
8、知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí) .綜上所述: 或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.5A【解析】利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6C【解析】設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求
9、出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線. 正方體的棱長(zhǎng)為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.7A【解析】根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體
10、積,解得,作平面,垂足為的外心,所以,且,所以在中,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題8D【解析】先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9A【解析】直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點(diǎn)睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于
11、一般性題目.10C【解析】化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題11B【解析】求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理
12、應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12A【解析】根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解: 以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直
13、平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,則,設(shè), ,即點(diǎn)的坐標(biāo)為,則,所以故答案為: 【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.1410【解析】根據(jù)已知數(shù)據(jù)直接計(jì)算即得.【詳解】由題得,.故答案為:10【點(diǎn)睛】本題考查求平均數(shù),是基礎(chǔ)題.15【解析】根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定.【詳解】對(duì)于,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無(wú)理數(shù)時(shí),則值域?yàn)?,所以錯(cuò)誤;對(duì)于,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù),所以滿足,所以正確;對(duì)于,因?yàn)?,?dāng)為無(wú)理數(shù)時(shí),可以是有理數(shù),也可以是無(wú)理數(shù),所以錯(cuò)誤;
14、對(duì)于,由定義可知,所以錯(cuò)誤;綜上可知,正確的為.故答案為:.【點(diǎn)睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問題的關(guān)鍵,屬于中檔題.16【解析】項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,故,由-得,顯然當(dāng)時(shí)不滿足上式,故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17();().【解析】試題分析:()在中,由余弦定理得,由正弦定理得,可得解;()由()可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:()在中,由余弦定理
15、得 ,所以,由正弦定理得,所以.()由()可知.在中, .在中,由正弦定理得,所以.所以的面積.18(1)(2)【解析】(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時(shí),即,無(wú)解;當(dāng)時(shí),即,得;當(dāng)時(shí),即,得.故所求不等式的解集為.(2)因?yàn)椋?,則,.當(dāng)且僅當(dāng)即時(shí)取等號(hào).故的最小值為.【點(diǎn)睛】本小題主要考查零點(diǎn)分段法解絕對(duì)值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19(1)證明見解析(2)證明見解析【解析】(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作
16、差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故.(2)由基本不等式得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.將上面四式相加,可得,即.【點(diǎn)睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.20(1)證明見解析,;(2).【解析】(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列是等差數(shù)列,且公差,其首項(xiàng)所以,解得;(2),得,所以.
17、【點(diǎn)睛】本題考查利用遞推公式證明等差數(shù)列,同時(shí)也考查了錯(cuò)位相減法求和,考查推理能力與計(jì)算能力,屬于中等題.21(1);(2)見解析.【解析】(1)分、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對(duì)值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí).綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,.所以,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.所以,即.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用基本不等式證
18、明不等式成立,涉及絕對(duì)值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.22()當(dāng)時(shí),0,單調(diào)遞減;當(dāng)時(shí),0,單調(diào)遞增;()詳見解析;().【解析】試題分析:本題考查導(dǎo)數(shù)的計(jì)算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計(jì)算能力.第()問,對(duì)求導(dǎo),再對(duì)a進(jìn)行討論,判斷函數(shù)的單調(diào)性;第()問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第()問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:()0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時(shí),0,單調(diào)遞減;當(dāng)時(shí),0,單調(diào)遞增.()令=,則=.當(dāng)時(shí),0,所以,從而=0.()由(),當(dāng)時(shí),0.當(dāng),時(shí),=.故當(dāng)在區(qū)間內(nèi)恒
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 理論與實(shí)踐文化傳承的雙重路徑
- 現(xiàn)代生活下的睡眠質(zhì)量挑戰(zhàn)與對(duì)策
- 現(xiàn)代商業(yè)地產(chǎn)中的多層辦公樓空間規(guī)劃技巧
- 2023六年級(jí)英語(yǔ)下冊(cè) Unit 4 At the Sports Meeting第2課時(shí)說課稿 陜旅版(三起)
- 現(xiàn)代綠色辦公空間的設(shè)計(jì)原則與實(shí)踐
- 《運(yùn)用有效的推理形式》說課稿-2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 《第三單元9 獵人海力布》說課稿-2024-2025學(xué)年五年級(jí)上冊(cè)語(yǔ)文統(tǒng)編版
- 班級(jí)文化的實(shí)踐與思考以某校為例
- 現(xiàn)代企業(yè)管理中的信息傳遞技巧
- 現(xiàn)代藝術(shù)在老房子翻新中的獨(dú)特魅力
- 2024年常德職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)完整
- 天津市河?xùn)|區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 工程防滲漏培訓(xùn)課件
- 黑龍江省哈爾濱市2024年數(shù)學(xué)八年級(jí)下冊(cè)期末經(jīng)典試題含解析
- 克羅恩病的外科治療
- 牛津3000核心詞匯表注釋加音標(biāo)1-4 完整版
- 高中英語(yǔ)以讀促寫教學(xué)策略與實(shí)踐研究課件
- 金屬表面處理中的冷噴涂技術(shù)
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量檢測(cè)化學(xué)試題(解析版)
- 黑龍江省齊齊哈爾市2023-2024學(xué)年高一上學(xué)期1月期末英語(yǔ)試題(含答案解析)
- 綜合素質(zhì)能力提升培訓(xùn)
評(píng)論
0/150
提交評(píng)論