福建省龍巖市上杭縣2022年高三第五次模擬考試數(shù)學試卷含解析_第1頁
福建省龍巖市上杭縣2022年高三第五次模擬考試數(shù)學試卷含解析_第2頁
福建省龍巖市上杭縣2022年高三第五次模擬考試數(shù)學試卷含解析_第3頁
福建省龍巖市上杭縣2022年高三第五次模擬考試數(shù)學試卷含解析_第4頁
福建省龍巖市上杭縣2022年高三第五次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1一輛郵車從地往地運送郵件,沿途共有地,依次記為,(為地,為地)從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地

2、后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,各地裝卸完畢后剩余的郵件數(shù)記為則的表達式為( )ABCD2如果實數(shù)滿足條件,那么的最大值為( )ABCD3已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為( )ABCD4已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為( )AB3C2D5 若數(shù)列滿足且,則使的的值為( )ABCD6某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高

3、考情況,得到如圖柱狀圖: 則下列結論正確的是( ).A與2016年相比,2019年不上線的人數(shù)有所增加B與2016年相比,2019年一本達線人數(shù)減少C與2016年相比,2019年二本達線人數(shù)增加了0.3倍D2016年與2019年藝體達線人數(shù)相同7已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()ABCD8年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是( )A月下旬新增確診人數(shù)呈波動下降趨勢B隨著全國醫(yī)療救治

4、力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C月日至月日新增確診人數(shù)波動最大D我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值9函數(shù)的最大值為,最小正周期為,則有序數(shù)對為( )ABCD10已知雙曲線:的焦點為,且上點滿足,則雙曲線的離心率為ABCD511對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,下列函數(shù)模型中擬合較好的是( )ABCD12已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13(5分)已知函數(shù),則不等式的解集為_14曲線在點處的切線方程是_.15如圖,半球內有一

5、內接正四棱錐,該四棱錐的體積為,則該半球的體積為_. 16已知向量,若,則_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,設點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.18(12分)已知函數(shù),()求的最小正周期;()求在上的最小值和最大值19(12分)已知函數(shù)f(x)xlnx,g(x)x2ax.(1)求函數(shù)f(x)在區(qū)間t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函數(shù)h(x)圖像上任意兩點,且滿足1,求實

6、數(shù)a的取值范圍;(3)若x(0,1,使f(x)成立,求實數(shù)a的最大值20(12分)在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示()求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);()填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”女生男生總計獲獎不獲獎總計附表及公式:其中,21(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某

7、校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;(2)按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(

8、概率用組合數(shù)算式表示);若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)22(10分)已知函數(shù)當時,求不等式的解集;,求a的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案【詳解】解:根據(jù)題

9、意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D【點睛】本題主要考查數(shù)列遞推公式的應用,屬于中檔題2B【解析】解:當直線過點時,最大,故選B3A【解析】首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應的函數(shù),所以,所以又,所以的最小值為故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.4D【解析】本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用

10、余弦定理,得到,而結合,可得,代入上式子中,得到,結合離心率滿足,即可得出,故選D【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難5C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C6A【解析】設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年

11、藝體達線人數(shù),故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.7A【解析】利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,則的漸近線方程為故選A【點睛】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.8D【解析】根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳

12、解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.9B【解析】函數(shù)(為輔助角)函數(shù)的最大值為,最小正周期為故選B10D【解析】根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳

13、解】依題意得,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.11D【解析】作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好12B【解析】由題可知,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,

14、幾何性質的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】易知函數(shù)的定義域為,且,則是上的偶函數(shù)由于在上單調遞增,而在上也單調遞增,由復合函數(shù)的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調遞增,可得,則,解得,故不等式的解集為14【解析】利用導數(shù)的幾何意義計算即可.【詳解】由已知,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.15【解析】由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐

15、的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.16-1【解析】由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標運算可得結論【詳解】由已知,故答案為:1【點睛】本題考查向量垂直的坐標運算掌握向量垂直與數(shù)量積的關系是

16、解題關鍵三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為, 又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為 .(2)由(1)得,橢圓的右準線方程為,離心率,則點到右準線的距離為,所以,即,把代入橢圓方程得,因為直線的斜率,所以, 因為直線經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以, 所以的面積.【點睛】本題主要考查

17、直線和圓、橢圓的位置關系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學生對這些知識的掌握水平和分析推理計算能力.18();()最小值和最大值【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值由已知,有的最小正周期(2)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),函數(shù)在閉區(qū)間上的最大值為,最小值

18、為考點:1兩角和與差的正弦公式、二倍角的正弦與余弦公式;2三角函數(shù)的周期性和單調性19(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點與所研究的區(qū)間的大小關系來進行求解(2)注意到函數(shù)h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)h(x2)x1x2(x1x2)恒成立,從而構造函數(shù)F(x)h(x)x在(0,)上單調遞增,進而等價于F(x)0在(0,)上恒成立來加以研究(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數(shù)的最值,得到a,再利用導數(shù)求函數(shù)M(x)的最大值,這要用到二次求導

19、,才可確定函數(shù)單調性,進而確定函數(shù)最值【詳解】(1) f(x)1,x0,令f(x)0,則x1.當t1時,f(x)在t,t1上單調遞增,f(x)的最小值為f(t)tlnt;當0t1時,f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t1)上為增函數(shù),f(x)的最小值為f(1)1.綜上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,則x1x20,則由,可得h(x1)h(x2)x1x2,變形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,則F(x)x2(a2)xlnx在(0,)上單調遞增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在

20、(0,)上恒成立因為2x2,當且僅當x時取“”,所以a22.(3)因為f(x),所以a(x1)2x2xlnx.因為x(0,1,則x1(1,2,所以x(0,1,使得a成立令M(x),則M(x).令y2x23xlnx1,則由y0 可得x或x1(舍)當x時,y0,則函數(shù)y2x23xlnx1在上單調遞減;當x時,y0,則函數(shù)y2x23xlnx1在上單調遞增所以yln40,所以M(x)0在x(0,1時恒成立,所以M(x)在(0,1上單調遞增所以只需aM(1),即a1.所以實數(shù)a的最大值為1.【點睛】本題考查了函數(shù)與導數(shù)綜合問題,考查了學生綜合分析,轉化與劃歸,數(shù)學運算能力,屬于難題.20(),;()詳見解析.【解析】()根據(jù)概率的性質知所有矩形的面積之和等于列式可解得; ()由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,從而可得列聯(lián)表,再計算出,與臨界值比較可得【詳解】解:(),()由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,列聯(lián)表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論