2022屆北京市昌平區(qū)臨川育人學校高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁
2022屆北京市昌平區(qū)臨川育人學校高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁
2022屆北京市昌平區(qū)臨川育人學校高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁
2022屆北京市昌平區(qū)臨川育人學校高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁
2022屆北京市昌平區(qū)臨川育人學校高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為( )ABCD2將函數(shù)向左平移個單位,得到的圖象,則滿足( )A圖象關于點對稱,在區(qū)間上為增函數(shù)B函數(shù)最大值為2,圖象關于點對稱C

2、圖象關于直線對稱,在上的最小值為1D最小正周期為,在有兩個根3已知函數(shù),若總有恒成立.記的最小值為,則的最大值為( )A1BCD4已知,分別是三個內角,的對邊,則( )ABCD5已知是虛數(shù)單位,則復數(shù)( )ABC2D6在的展開式中,含的項的系數(shù)是( )A74B121CD7已知集合,則( )ABCD8如果直線與圓相交,則點與圓C的位置關系是( )A點M在圓C上B點M在圓C外C點M在圓C內D上述三種情況都有可能9已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為( )ABCD10在四面體中,為正三角形,邊長為6,則四面體的體積為( )ABC24D1

3、1設集合,集合 ,則 =( )ABCDR12如圖,正方形網格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有( )A2對B3對C4對D5對二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則14某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1 000名學生的成績,并根據(jù)這1 000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在250,400)內的學生共有_人15若復數(shù)z滿足,其中i是虛數(shù)單位,則z的模是_.16記Sk1k+2k+3k+nk,當k

4、1,2,3,時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推測,AB_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.18(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.19(12分)已知的內角,的對邊分別為,且.

5、(1)求;(2)若的面積為,求的周長.20(12分)在綜合素質評價的某個維度的測評中,依據(jù)評分細則,學生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學生,得到如下的列聯(lián)表:優(yōu)秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現(xiàn)在如果想了解全校學生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學生中抽取少數(shù)一部分來分析,請你選擇

6、一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02421(12分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.22(10分)已知函數(shù)f(x)=ex-x2 -kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符

7、合題目要求的。1A【解析】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,且平面,的中點為外接球的球心,半徑,外接球表面積故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數(shù)據(jù)求得外接球的半徑是解答本題的關鍵2C【解析】由輔助角公式化簡三角函數(shù)式,結合三角函數(shù)圖象平移變換即可求得的解析式,結合正弦函數(shù)的圖象與性質即可判斷

8、各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,由正弦函數(shù)性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,由正弦函數(shù)的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質的綜合應用,屬于中檔題.3C【解析】根據(jù)總有恒成立可構造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,

9、總有即恒成立.設,則的最大值小于等于0.又,若則,在上單調遞增, 無最大值.若,則當時,在上單調遞減, 當時,在上單調遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時, ,在遞減;當時, ,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構造函數(shù)求解的最大值.屬于難題.4C【解析】原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎知識;考查運

10、算求解能力,推理論證能力,屬于中檔題.5A【解析】根據(jù)復數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數(shù)的基本運算,屬于基礎題.6D【解析】根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,7B【解析】計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.8B【解析】根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線

11、的距離,即也就是點到圓的圓心的距離大于半徑即點與圓的位置關系是點在圓外故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題9B【解析】由題可知,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題10A【解析】推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解: 在四面體中,為等邊三角形,邊長為6,分別取的中點,連結,則,且,平面,平面,四面體的體積為:.故答案

12、為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.11D【解析】試題分析:由題,選D考點:集合的運算12C【解析】畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作POAD于O,則有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對【點睛】本題考查了空間幾何體的三視

13、圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質.14750【解析】因為0.001+0.001+0.004+a+0.005+0.00350=1,得a=0.006,所以10000.004+0.006+0.00550=750。15【解析】先求得復數(shù),再由復數(shù)模的計算公式即得.【詳解】,則.故答案為:【點睛】本題考查復數(shù)的四則運算和求復數(shù)的模,是基礎題.16【解析】觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)

14、所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),A,A1,解得B,所以AB故答案為:【點睛】本題考查了歸納推理,意在考查學生的推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1):,直線:;(2)【解析】(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,曲線的極坐標方程是;由,化為直角坐標方程為(2)設,則,當時,取得最大值為【點睛】本題考查

15、參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化18(1);(2)【解析】(1)通過正弦定理和內角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.19(1);(2).【解析】(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果

16、;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【詳解】(1)由題設得.由正弦定理得,所以或.當,(舍)故,解得.(2),從而.由余弦定理得.解得.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應用正弦定理將邊化角,屬綜合性基礎題.20(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”(3)見解析.【解析】(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計算,比較后可得;(3)由于性別對結果有影響,因此用分層抽樣法【詳解】解:(1)優(yōu)秀合格總計男生62228女生141

17、832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”.(3)由(2)可知性別有可能對是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結果對學生在該維度的總體表現(xiàn)情況會比較符合實際情況.【點睛】本題考查獨立性檢驗,考查分層抽樣的性質考查學生的數(shù)據(jù)處理能力屬于中檔題21(1);(2)見解析【解析】(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y12y0,由,可得2x0+2y0t6,再根據(jù)向量的運算可得,即可證明【詳解】(1)左頂點A的坐標為(a

18、,0),|a5|3,解得a2或a8(舍去),橢圓C的標準方程為+y21,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1y0,得(x02 x0,y12y0) (0,y1y0)=0,整理可得y12y0,或y1y0 (舍),得(x0,2y0)(2x0,t2y0)2,整理可得2x0+2y0tx02+4y02+26,由(1)可得F(,0),(x0,2y0),(x0,2y0)(2,t)62x02y0t0,NFOP,故過點N且垂直于OP的直線過橢圓C的右焦點F【點睛】本題考查了橢圓方程的求法,直線和橢圓的關系,向量的運算,考查了運算求解能力和轉化與化歸能力,屬于中檔題.22(1);(2)見解析【解析】(1)求出,記,問題轉化為方程有兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論