一元二次方程復習課_第1頁
一元二次方程復習課_第2頁
一元二次方程復習課_第3頁
一元二次方程復習課_第4頁
一元二次方程復習課_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、(下一次課)(下一次課)定義及一般形式:v 只含有一個未知數(shù)只含有一個未知數(shù),未知數(shù)的最高次數(shù)是未知數(shù)的最高次數(shù)是_的的_式方程式方程,叫做一元二次方程。叫做一元二次方程。v一般形式一般形式:_二次二次整整axax2 2+bx+c=o (ao)+bx+c=o (ao)練習一練習一1、判斷下面哪些方程是一元二次方程、判斷下面哪些方程是一元二次方程222221x2y24(1)x -3x+4=x -7 ( ) (2) 2X = -4 ( )(3)3 X+5X-1=0 ( ) (4) 3x -20 ( )(5)13 ( )(6)0 ( )xy 練習二練習二2、把方程(、把方程(1-x x)(2-x x

2、)=3-x x2 化為一化為一般形式是:般形式是:_, 其二次項其二次項系數(shù)是系數(shù)是_,一次項系數(shù)是一次項系數(shù)是_,常數(shù)常數(shù)項是項是_.3、方程(、方程(m-2)x x|m| +3mx x-4=0是關于是關于x的一元二次方程,則的一元二次方程,則 ( )A.m=A.m=2 B.m=2 C.m=-2 D.m 2 B.m=2 C.m=-2 D.m 2 2 2x2-3x-1=02-3-1C解一元二次方程的方法有幾種解一元二次方程的方法有幾種? ? 例例:解下列方程解下列方程v、用直接開平方法、用直接開平方法:(x+2)2=v2、用配方法解方程、用配方法解方程4x2-8x-5=0解解:兩邊開平方兩邊開

3、平方,得得: x+2= 3 x=-23 x1=1, x2=-5右邊開平方右邊開平方后,根號前后,根號前取取“”。兩邊加上相等項兩邊加上相等項“1”。 解解:移項移項,得得: 3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1= x2 = 解解:原方程化為原方程化為 (y+2) 2 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或或 y-1=0 y1=-2 y2=141002 563x=先變?yōu)橐话阆茸優(yōu)橐话阈问?,代入形式,代入時注意符號。時注意符號。83-把把y+2y+2看作一個看作一個未知數(shù),變成未知

4、數(shù),變成(ax+b)(cx+d(ax+b)(cx+d)=)=0 0形式。形式。3 3、用公式法解方程、用公式法解方程 3x3x2 2=4x+7=4x+74 4、用分解因式法解方程:(、用分解因式法解方程:(y+2)y+2)2 2=3(y+2=3(y+2)4 同除二次項系數(shù)化為同除二次項系數(shù)化為1;移常數(shù)項到右邊;移常數(shù)項到右邊;兩邊加上一次項系數(shù)一半的平方;兩邊加上一次項系數(shù)一半的平方;化直接開平方形式化直接開平方形式;解方程。解方程。步驟歸納步驟歸納 先化為一般形式;先化為一般形式;再確定再確定a、b、c,求求b2-4ac; 當當 b2-4ac 0時時,代入公式代入公式:242bbacxa-

5、=步驟歸納步驟歸納若若b2-4ac0,方程沒有實數(shù)根。方程沒有實數(shù)根。右邊化為右邊化為0,左邊化成兩個因式左邊化成兩個因式的積;的積;分別令兩個因式為分別令兩個因式為0,求解。,求解。步驟歸納步驟歸納選用適當方法解下列一元二次方程選用適當方法解下列一元二次方程v1 1、 (2x+1)(2x+1)2 2=64 =64 ( ( 法法)v2 2、 (x-2)(x-2)2 2- -(x+(x+) )2 2=0 =0 ( ( 法法)v3 3、( (x-x-) )2 2 -(4-(4-x)=x)= ( ( 法法)v4 4、 x x- -x-10=x-10= ( ( 法法)v5 5、 x x- -x-x-=

6、 = ( ( 法法)v6 6、 x xx-1=0 x-1=0 ( ( 法法)v7 7、 x x -x-x-= = ( ( 法法)v8 8、 y y2 2- y-1=0- y-1=0 ( ( 法法) 2小結:選擇方法的順序是:小結:選擇方法的順序是: 直接開平方法直接開平方法 分解因式法分解因式法 配方法配方法 公式法公式法分解因式分解因式分解因式分解因式 配方配方公式公式配方配方分解因式分解因式公式公式直接開平方直接開平方練習三練習三一一元元二二次次方方程程一元二次方程的定義一元二次方程的定義一元二次方程的解法一元二次方程的解法一元二次方程的應用一元二次方程的應用把握住:把握?。阂粋€未知數(shù),最高次數(shù)是一個未知數(shù),最高次數(shù)是2, 整式方程整式方程一般形式:一般形式:ax+bx+c=0(a 0)直接開平方法:直接開平方法: 適應于形如(適應于形如(x-k) =h(h0)型)型 配方法:配方法: 適應于任何一個一元二次方程適應于任何一個一元二次方程公式法:公式法: 適應于任何一個一元二次方程適應于任何一個一元二次方程因式分解法:因式分解法: 適應于左邊能分解為兩個一次式的積,適應于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論