2017-2018年華師大九年級(jí)下《第26章二次函數(shù)》單元測(cè)試題含答案_第1頁(yè)
2017-2018年華師大九年級(jí)下《第26章二次函數(shù)》單元測(cè)試題含答案_第2頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1 第 26 章二次函數(shù) 時(shí)間:90 分鐘 滿分:120 分 一、選擇題(每小題 3 分,共 30 分) 1. 童裝店銷售一批某品牌童裝.已知銷售這種童裝每天獲得的利潤(rùn) y (元) 與童裝的 銷售價(jià) x(元/件)之間的函數(shù)表達(dá)式為 y= x2 + 160 x 5 800.若想每天獲得的利潤(rùn)最大, 則銷售價(jià)應(yīng)定為(D ) A. 110 元/件 B. 100 元/件 C. 90 元/件 D. 80 元/件 2. 拋物線 y = ax2+ bx+ c(a 工 0)的圖象如圖所示,關(guān)于該二次函數(shù),下列說(shuō)法錯(cuò)誤 的是(D ) 1 A.函數(shù)有最小值 B .對(duì)稱軸是直線 x= 2 1 C.當(dāng) XV 2, y

2、 隨 x 的增大而減小 D.當(dāng)一 1 vXV 2 時(shí),y 0 3. 建軍農(nóng)場(chǎng)擬建兩間矩形飼養(yǎng)室,一面靠現(xiàn)有墻 (墻足夠長(zhǎng)),中間用一道墻隔開, 并在如圖所示的三處各留 1 m寬的門已知計(jì)劃中的材料可建墻體 (不包括門)總長(zhǎng)為 27 m則能建成的飼養(yǎng)室總占地面積最大為 (C) A. 48 m B. 60.75 吊 C. 75 mi D. 112.5 m 第 3 題圖 4. 二次函數(shù) y = ax2 + bx+ c(a豐0)的部分圖象如圖所示,圖象過(guò)點(diǎn) (一 1, 0),對(duì)稱 軸為直線 x = 2,下列結(jié)論:4a+ b = 0;9a+ c3b;8a+ 7b+ 2c0;若點(diǎn) A( 3, 第 2 題圖

3、 2 1 7 y1)、點(diǎn) B( 2, y2)、點(diǎn) C(2,y3)在該函數(shù)圖象上,則 y1V ysv y2.其中正確的結(jié)論有(B) A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè) 5. 二次函數(shù)y= x2 2x + 2 的圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸分別是 (C )3 A. (1 , 3),直線 x = 1 B. ( 1, 3),直線 x= 1 C. ( 1, 3),直線 x = 1 D. (1 , 3),直線 x= 1 6 .將拋物線 y= 2(x 4)2 1 先向左平移 4 個(gè)單位長(zhǎng)度,再向上平移 2 個(gè)單位長(zhǎng)度, 平移后所得拋物線的表達(dá)式為 (A ) 2 2 A. y= 2x + 1 B

4、. y= 2x 3 2 2 C. y= 2(x 8) + 1 D. y= 2(x 8) 3 7已知拋物線的頂點(diǎn)在 x軸上,當(dāng) x = 2 時(shí)有最大值,且此函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1 , 3),則此拋物線的表達(dá)式為 (B ) 2 1 &若函數(shù) y= mx+ (m+ 2)x + gm 1 的圖象與 x軸只有一個(gè)交點(diǎn),則 m 的值為(D ) A. 0 B. 0 或 2 C. 2 或2 D. 0, 2 或2 9 .下列函數(shù)中,不是二次函數(shù)的是 (D ) 2 2 A. y= 1 2x B. y = 2(x + 5) 6 2 2 C. y= 3(x 1)(x 4) D. y= (x 2) x 10.二次

5、函數(shù) y = x2+ 2x 3 的圖象與 y 軸的交點(diǎn)坐標(biāo)是(A ) A. (0, 3) B. ( 3, 0) C. (1 , 0) D. (0 , 1) 二、填空題(每小題 3 分,共 24 分) 11.若 y = (a + 3)x2 3x + 5 是二次函數(shù),則 a 的取值范圍是 _ 3_ . 12 .已知二次函數(shù) y = ax2 + bx + c(a豐0)的圖象如圖所示,則不等式 ax2 + bx+ cv 0 的解集是 1 v x v 3 A. 2 y= 3(x 2) B. y = 3(x 2) 亠 2 C. y= 3(x + 2) D. 2 y = 3(x + 2) 4 13. 在平面

6、直角坐標(biāo)系中,將拋物線 y = 3x2先向右平移 1 個(gè)單位,再向上平移 2 個(gè) 單位,得到的拋物線的表達(dá)式是 _y = 3(x -1)2+ 2_. 14. 若二次函數(shù) y = (a 1)x 4x+ 2a 的圖象與 x 軸有且只有一個(gè)交點(diǎn),且開口向上, 則a 的值為_2_. 1 2 5 15 .已知二次函數(shù) y = x 3x ,設(shè)自變量的值分別為 X1、X2、X3,且一 3 v X1 vX2vX3y2y_. 2 16. 如圖,在平面直角坐標(biāo)系中,二次函數(shù) y = x + 4x k 的圖象與 x 軸交于點(diǎn) A、 B,與 y 軸交于點(diǎn) C,其頂點(diǎn)為 D,且 k0.若厶 ABC 與厶 ABD 的面積

7、比為 1 : 4,則 k 的值 4 一 5- 17. 我國(guó)中東部地區(qū)霧霾天氣日趨嚴(yán)重, 環(huán)境治 2 20. (8 分)已知拋物線 y= mx + nx + 6 的對(duì)稱軸是直線 x = 1. (1) 求證:2m n= 0; 若關(guān)于 x的方程 mf+ nx 6 = 0 的一個(gè)根為 2,求此方程的另一個(gè)根. 解:(1)證明:拋物線 y= mf+ nx + 6 的對(duì)稱軸是直線 x = 1, n 亠 = 1,整理得 2m= n,即 2m n = 0. 2m (2) 根據(jù)題意,y= m+ nx 6 與 x 軸的一個(gè)交點(diǎn)為(2,0). 拋物線的對(duì)稱軸是直線 x = 1, 5 理已刻不容緩. 某電器商場(chǎng)根據(jù)民

8、眾 健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是 200 元/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn): 在一個(gè)月內(nèi),當(dāng)售價(jià)是 400 元/臺(tái)時(shí),可售出 200 臺(tái),且售價(jià)每降低 10 元,就可多售出 50 臺(tái).當(dāng)每臺(tái)售價(jià)定為 _320_元時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)最大, 最大利潤(rùn)為 _72_000_元. 18. 如圖,P 是拋物線 y= x2 + x+ 2 在第一象限上的點(diǎn),過(guò)點(diǎn) P分別向 x軸和 y軸 引垂線,垂足分別為 A、B,則四邊形 OAPB 周長(zhǎng)的最大值為 _ _. 三、解答題(共 66 分) 19. (7 分)通過(guò)配方,把函數(shù) y = 3x2 6x + 10 化成 y = a(x

9、 h)2+ k 的形式,然后 指出它的圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)和最值. 解:= 3x2 6x + 10 = 3( x + 1)2+ 13, 圖象的開口向下,對(duì)稱軸是直線 x = 1,頂點(diǎn)坐標(biāo)是(1,13),有最大值 13.6 拋物線的圖象與 x軸的另一個(gè)交點(diǎn)為(一 4, 0), 方程 mf+ nx 6= 0 的另一根為一 4. 21. (9 分)把一個(gè)足球垂直于水平地面向上踢, 時(shí)間為 t( s)時(shí)該足球距離地面的高度 h(m適用公式 h = 20t 5t (0 wt w4). (1) 當(dāng) t = 3 時(shí),求足球距離地面的高度; (2) 當(dāng)足球距離地面的高度為 10 m時(shí),求 t 的值

10、; (3) 若存在實(shí)數(shù) tl, t2(tlM 12),當(dāng) t = t 1或 t2時(shí),足球距離地面的高度都為 a m求 a 的取值范圍. 解:(1)當(dāng) t = 3 時(shí),h= 20X3 5X9= 15.即足球距離地面的高度為 15 m. (2) 當(dāng) h= 10 時(shí),貝U 20t 5t2 = 10,即卩 t2 4t + 2= 0,解得 t = 2+ 2 或 2 2. (3) v a0 ,由題意得 t1,t2是方程 20t 5t 2= a 的兩個(gè)不相等的實(shí)數(shù)根, 202 20a 0,解得 av20.故 a 的取值范圍是 Owav 20. 22. (10 分)(2017 金華)甲、乙兩人進(jìn)行羽毛球比賽,

11、羽毛球飛行的路線為拋物線 的一部分,如圖,甲在 O 點(diǎn)正上方 1 m的點(diǎn) P 處發(fā)出一球,羽毛球飛行的高度 y(n)與水 平距離 x(n)之間滿足函數(shù)表達(dá)式 y= a(x 4)2+ h,已知點(diǎn) O 與球網(wǎng)的水平距離為 5 m球 網(wǎng)的高度為 1.55 m 1 (1)當(dāng) a= 24時(shí),求 h的值;通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng). 12 O 的水平距離為 7 m 離地面的咼度為 m 5 5 =1,解得 h = 3. 1 2 5 1 2 5 把 x = 5 代入 y= 24(X 4)2+ 3,得 y = 24X (5 4)2+ 3= 1.625. v 1.625 1.55,此球能過(guò)網(wǎng).若甲發(fā)球過(guò)網(wǎng)后,羽毛球

12、飛行到與點(diǎn) 1 24X 16 + h 的點(diǎn) Q 處時(shí),乙扣球成功,求 解:(1)當(dāng) a =;時(shí), 7 廠 1 16a + h= 1, a =一云, 12 2 I 5 (2)把(0, 1)、(7, h 代入 y = a(x 4) + h,得丫 12 解得 /-a 5 9a+h =亍 h 21 5 I h = 了 1 5. 23. (10 分)如圖所示,已知拋物線 y = 2x2 4x的圖象 E,將其向右平移 2 個(gè)單位 后得到圖象 F. (1) 求圖象 F 的表達(dá)式. 設(shè)拋物線 F 與 x軸分別相交于點(diǎn) O B(點(diǎn) B 位于點(diǎn) O 的右側(cè)),頂點(diǎn)為點(diǎn) C,點(diǎn) A 位于 y 軸的負(fù)半軸上,且到 x

13、 軸的距離等于點(diǎn) C 到 x軸的距離的 2 倍,求 AB 所在直線的 表達(dá)式. 8 2 2 解:(1)由 y= 2x 4x = 2(x+ 1) + 2 知,圖象 E 的頂點(diǎn)坐標(biāo)為 (1, 2) . 圖 象 F 是由圖象 E 向右平移 2 個(gè)單位得到的,圖象 F 的頂點(diǎn)坐標(biāo)為(1 , 2 2 表達(dá)式為 y= 2(x 1) + 2.即 y= 2x + 4x. (2)當(dāng) y = 2x + 4x = 0 時(shí),解得 X1 = 0, X2= 2. 點(diǎn) B 的坐標(biāo)為(2, 0) . 點(diǎn) C 的坐 標(biāo)為(1, 2),點(diǎn) C 到 x 軸的距離為 2. OA= 2X 2 = 4. 點(diǎn) A 的坐標(biāo)為 (0, 4).

14、設(shè)直 線 AB 的表達(dá)式為 y= kx + b,則 b = 4, 2k + b= 0, k= 2, 解得= 則直線 AB 的表達(dá)式為 y = 2x b= 4. 4. 24. (10 分)某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為 20 元,出于營(yíng)銷考慮,要求每本 紀(jì)念冊(cè)的售價(jià)不低于 20 元且不高于 28 元在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量 y(本) 與每本紀(jì)念冊(cè)的售價(jià) x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為 22 元時(shí),銷售量為 36 本;當(dāng)銷售單價(jià)為 24 元時(shí),銷售量為 32 本. (1) 請(qǐng)求出 y 與 x 的函數(shù)關(guān)系式; (2) 當(dāng)每周銷售這種紀(jì)念冊(cè)獲得 150 元的利潤(rùn)時(shí),每本紀(jì)念

15、冊(cè)的銷售單價(jià)是多少元? (3) 設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為 W 元,將該紀(jì)念冊(cè)銷售單價(jià)定為 多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少? 9 22k + b = 36, 解:(1)設(shè) y= kx + b,把(22, 36)與(24, 32)代入 y= kx + b 得 解得 24k + b = 32, k = 2, b = 80. y 與 x 的函數(shù)關(guān)系式為 y = 2x + 80. (2) 設(shè)當(dāng)每周銷售這種紀(jì)念冊(cè)獲得 150 元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)為 x 元. 根據(jù)題意,得 (x 20) ( 2x+ 80) = 150,解得 xi = 25, X

16、2= 35(舍去). 答:每本紀(jì)念冊(cè)的銷售單價(jià)是 25 元. (3) 根據(jù)題意,得 W= (x 20)( 2x + 80) = 2x2+ 120 x 1 600 = 2 (x 30)2 + 200. 20,售價(jià)不低于 20 元且不高于 28 元, 當(dāng) x = 28 時(shí),血大值=2X (28 30) + 200 = 192. 答:該紀(jì)念冊(cè)銷售單價(jià)定為 28 元時(shí),所獲利潤(rùn)最大,最大利潤(rùn)是 192 元. 25. (12 分)如圖,拋物線 y = x2+ bx c 與 x 軸交于 A( 1, 0)、B(3 , 0)兩點(diǎn),直線 I與拋物線交于 A、C 兩點(diǎn),其中 C 點(diǎn)的橫坐標(biāo)為 2. (1) 求拋物

17、線及直線 AC 的函數(shù)表達(dá)式; (2) 點(diǎn) M 是線段 AC 上的點(diǎn)(不與 A、C 重合),過(guò)點(diǎn) M 作 MF/y軸交拋物線于點(diǎn) F,若 點(diǎn) M的橫坐標(biāo)為 m 請(qǐng)用 m 的代數(shù)式表示 MF 的長(zhǎng); (3) 在的條件下,連接 FA、FC,是否存在 m 使厶 AFC 的面積最大?若存在,求 m 的值;若不存在,說(shuō)明理由. 2 1 b c = 0, 解:(1)把 A 1, 0)、B(3, 0)代入 y = x + bx c 得 t 9 + 3b c = 0, b = 2, 2 解得 拋物線的表達(dá)式為 y= x 2x 3. |c = 3. - 把 x= 2 代入 y= x 2x 3 得 y = 3,二 C(2, 3). 設(shè)直線 AC 的表達(dá)式為 y = kx + m,把 A 1, 0)、C(2, 3)代入得 10 k + m= 0, 2k + m= 3, 解得 f = 1, m= 1. 直線 AC 的表達(dá)式為 y = x 1. 11 (2) I點(diǎn) M 在直線 AC

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論