福建高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)(含答案)_第1頁
福建高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)(含答案)_第2頁
福建高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)(含答案)_第3頁
福建高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)(含答案)_第4頁
福建高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)(含答案)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、福建2019屆高考數(shù)學(xué)雙曲線專項(xiàng)練習(xí)含答案在數(shù)學(xué)中 ,雙曲線是定義為平面交截直角圓錐面的兩半的一類圓錐曲線。以下是雙曲線專項(xiàng)練習(xí) ,請(qǐng)考生認(rèn)真練習(xí)。1.M(-2,0),N(2,0),|PM|-|PN|=3,那么動(dòng)點(diǎn)P的軌跡是()A.雙曲線 B.雙曲線左邊一支C.雙曲線右邊一支 D.一條射線2.假設(shè)雙曲線方程為x2-2y2=1,那么它的右焦點(diǎn)坐標(biāo)為()A. B. C. D.(,0)3.(2019大綱全國(guó),文11)雙曲線C:=1(a0)的離心率為2,焦點(diǎn)到漸近線的距離為,那么C的焦距等于()A.2 B.2 C.4 D.44.過雙曲線=1(a0)的右焦點(diǎn)F作圓x2+y2=a2的切線FM(切點(diǎn)為M),

2、交y軸于點(diǎn)P.假設(shè)M為線段FP的中點(diǎn),那么雙曲線的離心率是()A. B. C.2 D.5.雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),M是此雙曲線上的一點(diǎn),且滿足=0,|=2,那么該雙曲線的方程是()A.-y2=1 B.x2-=1 C.=1 D.=16.雙曲線C的離心率為2,焦點(diǎn)為F1,F2,點(diǎn)A在C上.假設(shè)|F1A|=2|F2A|,那么cosAF2F1=()A. B. C. D.7.(2019福建莆田模擬)雙曲線=1的右焦點(diǎn)的坐標(biāo)為(,0),那么該雙曲線的漸近線方程為 .8.A,B是雙曲線C的兩個(gè)頂點(diǎn),直線l與雙曲線C交于不同的兩點(diǎn)P,Q,且與實(shí)軸所在直線垂直.假設(shè)=0,那么雙曲線C的離

3、心率e= .9.雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).(1)求雙曲線方程;(2)假設(shè)點(diǎn)M(3,m)在雙曲線上,求證:=0;(3)在(2)的條件下求F1MF2的面積.10.(2019福建廈門模擬)雙曲線=1(a0)的一條漸近線方程是y=x,坐標(biāo)原點(diǎn)到直線AB的距離為,其中A(a,0),B(0,-b).(1)求雙曲線的方程;(2)假設(shè)B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N求時(shí),直線MN的方程.能力提升組11.等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),|AB|=4,那么C的實(shí)軸長(zhǎng)為()A. B

4、.2 C.4 D.812.點(diǎn)P是雙曲線=1(a0)右支上一點(diǎn),F1,F2分別為雙曲線的左、右焦點(diǎn),點(diǎn)I為PF1F2的內(nèi)心,假設(shè)+成立,那么的值為()A. B. C. D.13.假設(shè)點(diǎn)O和點(diǎn)F(-2,0)分別為雙曲線-y2=1(a0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),那么的取值范圍為()A.3-2,+) B.3+2,+)C. D.14.(2019浙江,文17)設(shè)直線x-3y+m=0(m0)與雙曲線=1(a0)的兩條漸近線分別交于點(diǎn)A,B.假設(shè)點(diǎn)P(m,0)滿足|PA|=|PB|,那么該雙曲線的離心率是 .15.(2019湖南,文20)如圖,O為坐標(biāo)原點(diǎn),雙曲線C1:=1(a10)和橢

5、圓C2:=1(a20)均過點(diǎn)P,且以C1的兩個(gè)頂點(diǎn)和C2的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.(1)求C1,C2的方程;(2)是否存在直線l,使得l與C1交于A,B兩點(diǎn),與C2只有一個(gè)公共點(diǎn),且|=|?證明你的結(jié)論.16.雙曲線E:=1(a0)的兩條漸近線分別為l1:y=2x,l2:y=-2x.(1)求雙曲線E的離心率;(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1,l2于A,B兩點(diǎn)(A,B分別在第一、四象限),且OAB的面積恒為8.試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?假設(shè)存在,求出雙曲線E的方程;假設(shè)不存在,說明理由.1.C 解析:|PM|-|PN|=34,由雙曲

6、線定義知,其軌跡為雙曲線的一支.又|PM|PN|,點(diǎn)P的軌跡為雙曲線的右支.2.C 解析:雙曲線的標(biāo)準(zhǔn)方程為x2-=1,a2=1,b2=.c2=a2+b2=.c=,故右焦點(diǎn)坐標(biāo)為.3.C 解析:e=2,=2.設(shè)焦點(diǎn)F2(c,0)到漸近線y=x的距離為,漸近線方程為bx-ay=0,c2=a2+b2,b=.由=2,得=2,=4,解得c=2.焦距2c=4,應(yīng)選C.4.A 解析:如下圖,在RtOPF中,OMPF,且M為PF的中點(diǎn),那么POF為等腰直角三角形.所以O(shè)MF也是等腰直角三角形.所以有|OF|=|OM|,即c=a.故e=.5.A 解析:由=0,可知.可設(shè)|=t1,|=t2,那么t1t2=2.在

7、MF1F2中,=40,那么|t1-t2|=6=2a.解得a=3.故所求雙曲線方程為-y2=1.6.A 解析:雙曲線的離心率為2,=2,abc=12.又|AF1|=4a,|AF2|=2a,|F1F2|=2c=4a,cosAF2F1選A.7.2x3y=0 解析:因?yàn)橛医裹c(diǎn)坐標(biāo)是(,0),所以9+a=13,即a=4.所以雙曲線方程為=1.所以漸近線方程為=0,即2x3y=0.8. 解析:如下圖,設(shè)雙曲線方程為=1,取其上一點(diǎn)P(m,n),那么Q(m,-n),由=0可得(a-m,-n)(m+a,-n)=0,化簡(jiǎn)得a2-m2+n2=0.又=1可得b=a,故雙曲線的離心率為e=.9.(1)解:因?yàn)閑=,所

8、以可設(shè)雙曲線方程為x2-y2=.因?yàn)殡p曲線過點(diǎn)(4,-),所以16-10=,即=6.所以雙曲線方程為=1.(2)證明:由(1)可知,在雙曲線中a=b=,所以c=2.所以F1(-2,0),F2(2,0).所以=(-2-3,-m),=(2-3,-m),那么=9-12+m2=m2-3.因?yàn)辄c(diǎn)(3,m)在雙曲線上,所以9-m2=6,即m2=3.所以=m2-3=0.(3)解:由(2)知F1MF2的高h(yuǎn)=|m|=,由F1MF2的底邊|F1F2|=4,那么=6.10.解:(1)設(shè)直線AB:=1,由題意,所以所以雙曲線方程為=1.(2)由(1)得B(0,-3),B1(0,3),設(shè)M(x1,y1),N(x2,y

9、2),易知直線MN的斜率存在.設(shè)直線MN:y=kx-3,所以所以3x2-(kx-3)2=9.整理得(3-k2)x2+6kx-18=0,所以x1+x2=,y1+y2=k(x1+x2)-6=,x1x2=,y1y2=k2(x1x2)-3k(x1+x2)+9=9.因?yàn)?(x1,y1-3),=(x2,y2-3), =0,所以x1x2+y1y2-3(y1+y2)+9=0,即+9-+9=0,解得k2=5,所以k=,代入有解,所以lMN:y=x-3.11.C 解析:設(shè)等軸雙曲線方程為x2-y2=m(m0),因?yàn)閽佄锞€的準(zhǔn)線為x=-4,且|AB|=4,所以|yA|=2.把坐標(biāo)(-4,2)代入雙曲線方程得m=x2

10、-y2=16-12=4,所以雙曲線方程為x2-y2=4,即=1.所以a2=4,所以實(shí)軸長(zhǎng)2a=4.12.B 解析:設(shè)PF1F2內(nèi)切圓半徑為r,根據(jù)可得|PF1|r=|PF2|r+2cr,整理可得|PF1|=|PF2|+2c.由雙曲線的定義可得|PF1|-|PF2|=2a,那么2c=2a,故=.13.B 解析:由a2+1=4,得a=,那么雙曲線方程為-y2=1.設(shè)點(diǎn)P(x0,y0),那么=1,即-1.=x0(x0+2)+=+2x0+-1x0,當(dāng)x0=時(shí),取最小值3+2.故的取值范圍是3+2,+).14. 解析:雙曲線=1的兩條漸近線方程分別是y=x和y=-x.由解得A,由解得B.設(shè)AB中點(diǎn)為E,

11、那么E.由于|PA|=|PB|,所以PE與直線x-3y+m=0垂直,而kPE=,于是=-1.所以a2=4b2=4(c2-a2).所以4c2=5a2,解得e=.15.解:(1)設(shè)C2的焦距為2c2,由題意知,2c2=2,2a1=2.從而a1=1,c2=1.因?yàn)辄c(diǎn)P在雙曲線x2-=1上,所以=1.故=3.由橢圓的定義知2a2=2.于是a2=2.故C1,C2的方程分別為x2-=1,=1.(2)不存在符合題設(shè)條件的直線.假設(shè)直線l垂直于x軸,因?yàn)閘與C2只有一個(gè)公共點(diǎn),所以直線l的方程為x=或x=-.當(dāng)x=時(shí),易知A(),B(,-),所以|=2,|=2.此時(shí),|.當(dāng)x=-時(shí),同理可知,|.假設(shè)直線l不

12、垂直于x軸,設(shè)l的方程為y=kx+m.由得(3-k2)x2-2kmx-m2-3=0.當(dāng)l與C1相交于A,B兩點(diǎn)時(shí),設(shè)A(x1,y1),B(x2,y2),那么x1,x2是上述方程的兩個(gè)實(shí)根,從而x1+x2=,x1x2=.于是y1y2=k2x1x2+km(x1+x2)+m2=.由得(2k2+3)x2+4kmx+2m2-6=0.因?yàn)橹本€l與C2只有一個(gè)公共點(diǎn),所以上述方程的判別式=16k2m2-8(2k2+3)(m2-3)=0.化簡(jiǎn),得2k2=m2-3,因此=x1x2+y1y2=0,于是+2-2,即|,故|.綜合,可知,不存在符合題設(shè)條件的直線.16.解法一:(1)因?yàn)殡p曲線E的漸近線分別為y=2x

13、,y=-2x,所以=2,所以=2,故c=a,從而雙曲線E的離心率e=.(2)由(1)知,雙曲線E的方程為=1.設(shè)直線l與x軸相交于點(diǎn)C.當(dāng)lx軸時(shí),假設(shè)直線l與雙曲線E有且只有一個(gè)公共點(diǎn),那么|OC|=a,|AB|=4a,又因?yàn)镺AB的面積為8,所以|OC|AB|=8,因此a4a=8,解得a=2,此時(shí)雙曲線E的方程為=1.假設(shè)存在滿足條件的雙曲線E,那么E的方程只能為=1.以下證明:當(dāng)直線l不與x軸垂直時(shí),雙曲線E:=1也滿足條件.設(shè)直線l的方程為y=kx+m,依題意,得k2或k-2,那么C.記A(x1,y1),B(x2,y2).由得y1=,同理得y2=,由SOAB=|OC|y1-y2|得,=

14、8,即m2=4|4-k2|=4(k2-4).由得,(4-k2)x2-2kmx-m2-16=0.因?yàn)?-k20,=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),又m2=4(k2-4),所以=0,即l與雙曲線E有且只有一個(gè)公共點(diǎn).因此,存在總與l有且只有一個(gè)公共點(diǎn)的雙曲線E,且E的方程為=1.解法二:(1)同解法一.(2)由(1)知,雙曲線E的方程為=1.設(shè)直線l的方程為x=my+t,A(x1,y1),B(x2,y2).依題意得-2或k-2.由得,(4-k2)x2-2kmx-m2=0,因?yàn)?-k20,0,所以x1x2=,又因?yàn)镺AB的面積為8,所以|OA|OB|sinAO

15、B=8,由sinAOB=,所以=8,化簡(jiǎn)得x1x2=4.所以=4,即m2=4(k2-4).由(1)得雙曲線E的方程為=1,由得,(4-k2)x2-2kmx-m2-4a2=0,因?yàn)?-k20,直線l與雙曲線E有且只有一個(gè)公共點(diǎn)當(dāng)且僅當(dāng)=4k2m2+4(4-k2)(m2+4a2)=0,即(k2-4)(a2-4)=0,所以a2=4,所以雙曲線E的方程為=1.當(dāng)lx軸時(shí),由OAB的面積等于8可得l:x=2,又易知l:x=2與雙曲線E:=1有且只有一個(gè)公共點(diǎn).這個(gè)工作可讓學(xué)生分組負(fù)責(zé)收集整理,登在小黑板上,每周一換。要求學(xué)生抽空抄錄并且閱讀成誦。其目的在于擴(kuò)大學(xué)生的知識(shí)面,引導(dǎo)學(xué)生關(guān)注社會(huì),熱愛生活,所以內(nèi)容要盡量廣泛一些,可以分為人生、價(jià)值、理想、學(xué)習(xí)、成長(zhǎng)、責(zé)任、友誼、愛心、探索、環(huán)保等多方面。如此下去,除假期外,一年便可以積累40多那么材料。如果學(xué)生的腦海里有了眾多的鮮活生動(dòng)的材料,寫起文章來還用亂翻參考書嗎?綜上所述,存在總與l有且只有一個(gè)公共點(diǎn)的雙曲線E,且E的方程為=1.要練說 ,得練聽。聽是說的前提 ,聽得準(zhǔn)確 ,才有條件正確模仿 ,才能不斷地掌握高一級(jí)水平的語言。我在教學(xué)中 ,注意聽說結(jié)合 ,訓(xùn)練幼兒聽的能力 ,課堂上 ,我特別重視教師的語言 ,我對(duì)幼兒說話 ,注意聲音清楚 ,上下起伏 ,抑揚(yáng)有致 ,富有吸引力 ,這樣能引起幼兒的注意。當(dāng)我發(fā)現(xiàn)有的幼兒不專心聽別人發(fā)言

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論