版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 AutomationTom RidgeApril 12, 2005Contents1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2、. . . . . . . . . .13 Current Automation in Interactive Provers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.1 Proof Search .
3、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64.1.1 Logical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.2 Intro Rules . . . . . . . . . . . . . . . . . .
4、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84.2.1 Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5、 . . . . . . . . . . . . . . . . . . . . . . .8 4.2.2 Conditional Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.3 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6、4.2.4 Dynamic Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114.2.5 Equational Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 5 Interface and Integration . . . . .
7、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 6 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136.1 Assessment wrt. Requirements . . . . . . . . . . . . .
8、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9、. . . . . . . . . . . . . . . . . . . . . . .14 6.4 In Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 7 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10、. . . . . . . . . . . . . . .16 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 IntroductionAutomation can be key to successful mechanisation. In some situations, mechanisation is feasible without automat
11、ion. Indeed, in highly abstract mathematical areas, most mechanised reasoning consists of the user spelling out complicated arguments which are far beyond those which can currently be tackled by automation. In this setting, automation, if it is used at all, is directed at easily solvable, tightly de
12、fined subproblems. A typical example of such a mechanisation is our formalisation of Ramseys Theorem Rid04. On the other hand, automation can be fruitfully applied in verification style proofs, where the reasoning is relatively restricted, but the sheer level of detail makes a non-automated mechanis
13、ation infeasible.Many man years have been spent developing fully automatic systems such as VampireVR and Otter McC. It would be foolish to imagine that we could compete with such systems. Their performance is way beyond that of systems currently implemented in interactive theorem provers. Projects a
14、re underway MP04 to link such systems to interactive theorem provers. This is extremely valuable work: if one knows that a first order statement is provable, then one should probably expect that the machine can provide a proof.In this section, we outline some techniques we have applied in various ca
15、se studies. Naturally we do not seek to solve the problem of automated reasoning once and for all. Rather we focus on the problems that typically arise in the case studies we have been involved with. We start by outlining the functionality we require of the automated engine. We then describe the tec
16、hniques we applied, and how they were integrated. We evaluate the resulting engine qualitatively in terms of our requirements, and quantitatively with respect to a sizable case study. Few of these techniques are novel, rather, we seek to combine existing techniques in a suitable fashion.These proced
17、ures were developed in the HOL Light theorem prover, which we found to be an excellent vehicle for prototyping different approaches.2 RequirementsWhat do we require of our automation? Let us distinguish between automation for fully automatic use, and automation for interactive use, the requirements
18、for each being considerably different.Perhaps unexpectedly, failure of the automated proof engine is the norm, is the sense that when interactively developing complex proofs we spend most of our time on obligations that are almost provable. Thus we would like the prover to give us excel lent feedbac
19、k as to why obligations could not be discharged. Sym98This quote emphasizes an important difference between automatic and interactive proof. In automatic pro of, one typically knows that the goal is provable (or at least, suspects very strongly, and is prepared to wait a considerable amount of time
20、before terminating a proof search). Indeed, automatic provers are judged on how many provable goals they can actually prove. In interactive pro of, we spend most of our time on obligations that are almost provable. This is the difference between interactive and automatic proof. If we spend most of t
21、he time trying to prove goals that are simply not provable, then completeness of the proof search becomes less important. This is not to say that it loses importance altogether: if a system lacks completeness, then it will fail to prove some provable goals. It is vitally important to know what sort
22、of goals one is giving up on, in order that one can understand what it means when a prover fails to prove a goal. Such knowledge is also useful when combining systems: in order to understand the behaviour of the system as a whole oneshould first understand the behaviour of the parts.What properties
23、might be preferred, in an interactive setting, over completeness? For us, the most important aspect of automation is simplicity. By this we do not mean implementation simplicity (how many lines did it take to implement the system? etc.), but conceptual simplicity. For instance, simplification is use
24、d ubiquitously in interactive theorem proving. If the set of rewrite rules is not confluent, then to understand the behaviour of the simplifier, one has to understand the order in which the rules are applied. Needless to say, this is an extremely complex thing to understand, and proofs which depend
25、on these properties are presumably extremely fragile. Conceptual simplicity for a simplifier is closely bound up with confluence and termination of the simpset. Conceptual simplicity is important if a user is to understand the system. If a system is conceptually simple, it will hopefully be simple t
26、o use.In an interactive setting, we expect automation to fail. In order to make progress, we must understand why a proof attempt fails: the prover must provide feedback. Resolution based systems can provide feedback, but they are destructive (in the sense that the goal is converted into a normal for
27、m before the proof attempt starts, destroying the original logical structure), so that the feedback can be difficult to understand (the point where the proof fails may lo ok very different to the original goal). A better approach is to conduct the proof in a way that is as close as possible to how a
28、 human might conduct the proof. We require the proof system to be natural in some sense. In this case, if a proof attempt fails, the failing branch can often be returned directly to the user for inspection.Feedback is related to visibility. Often a user wishes to inspect a failed proof, but only a p
29、roof trace is available, which can cause a conceptual mismatch: the user is focused on sequents, whereas the trace may be of a different nature altogether. If there are many unproved branches, then a user might not inspect them all, but might wish to step through the proof. Automatic methods, such a
30、s John Harrisons implementation of mo del eliminationHar96, often search for a pro of in a tree making use of global information about nodes visited previously. If this global information is not present in the sequent the user has access to, it will be difficult to step through the automatic pro of
31、by simply invoking the automatic prover a step at a time: the automatic prover will not make the same decisions it made when conducting the search using global information because it only has access to the local sequent.Many methods currently employed by interactive theorem provers, such as Isabelle
32、s blast, leave the goal unchanged if they fail to prove it. Natural methods of proof search expect to make at least some progress in all situations, so that they can assist even if the goal is not provable. For instance, safe steps (such asE in many systems) should be performed, simplification steps
33、 applied and so on.Automation should also be stable. In large proofs, one frequently mixes interactive and automatic proof. If the goals returned by automation are apt to change radically with slight variations in the goal, then the dependent interactive proofs can be rendered useless, and must be r
34、ewritten. For this reason, unsolvable subgoals returned by automation should be stable under small changes to the original goal.If a proof can be found, then one begins to focus on aspects that make the pro of more maintainable, such as robustness. Efficiency is the icing on the cake. Completeness i
35、s also important, although not necessarily completeness in the full first order sense, but rather there should be a clear notion of the class of problems a given procedure solves. At any rate, it is vital to have some theoretical understanding of the behaviour of the system, if it is to approach the
36、 goal of being simple.Let us summarize these points: Automation should be simple: it should be theoretically well understood, and predictable in use. Automation should also provide feedback, so that the user can assess why a proof attempt failed. An even stronger requirement is that automation be vi
37、sible, in that one can directly inspect the execution of the automation e.g. by stepping though the pro of search. Automation should be natural, in order to minimise the conceptual gap between the prover and the user. For instance, automation should execute in standard logical systems that are close
38、 to, or identical with, the tactic level at which the user conducts proofs. Often, there are many safe steps that the user would make to progress a proof. Automation that simply returns provable or not provable is less useful than automation that at least makes progress before returning. Automation
39、should be stable, so that small changes to theories do not produce large changes in the behaviour of the automation. This is important because interactive proofs contain large sections of interleaved user/automation steps. Automation should also be robust, in the sense that small changes do not affe
40、ct automatic provability. We would like automation to be efficient for obvious reasons.Finally, we would like automation to be complete wrt. well defined classes of problems.3 Current Automation in Interactive ProversThe current methods of automated proof in interactive theorem provers do not meet t
41、he requirements of the previous section.Isabelle/HOL is representative of current HOL implementations as regards automation. The main automatic techniques that are used are a tableaux prover blast, and the simplifier simp. These are combined in the single auto tactic. Isabelle also includes a model
42、elimination procedure which is similar in use to blast.Simp is widely used, but is not a complete first order proof method. However, the fact that it does meet many of the requirements of the previous section explains why it is so popular in interactive proof. The blast method performs well on simpl
43、e problems of predicate logic and sets, but it is hard to understand exactly what its properties are. It is based on a prover, leanTAP BP95, that is complete for first order logic. On the other hand, the following goal is trivially provable in first order logic, but blast fails.f (g a) = a y .g(f y
44、) = yThis is even more upsetting when one realises that the term g a, occurring in the sequent itself, is a witness to the existential. To make matters worse, when expressed in a typed logic such as HOL, g a is the only term occurring in the sequent of the correct type that could be used! This failu
45、re to deal adequately with equational logic is a general failing of tableaux style procedures incorporating unification. The auto method is almost never used in the middle of interactive proofs because it is so unconstrained. Moreover, it is unstable, in that the subgoals it generates can be wildly
46、different under minor changes to the goal, which renders is unusable except in tightly controlled areas.The work MP04 to integrate Vampire, a modern resolution prover, into Isabelle will not necessarily rectify these failings. Resolution based methods provide little support for interactive theorem p
47、roving, because the reduction to clause form means that the user has little visibility into the proof search, and little understanding of why a particular lemma failed. The proof search is a local forward synthetic search as opposed to a global backwards analytic search typical of tableaux presentat
48、ions and the tactic level of Isabelle. Thus, resolution is an unnatural system for the user. In general the feedback from such systems is poor or at worst non-existent. Furthermore, whereas many steps should be considered safe(apply a terminating and confluent set of rewrites, perform a E step), bec
49、ause the system is being used as a black box, either the goal is solved outright or, more usually, not solved at all, and information that is contained in the system about which steps can be safely applied is lost, leaving the user having to apply such steps manually. The problem here is that the sy
50、stem fails to make progress on goals that it is unable to prove outright.Let us also make the following observation about first order theorem provers. These provers are designed to find large quantifier instantiations, optionally modulo equality reasoning. Yet the failure of automation in interactiv
51、e theorem provers is not the failure to guess large quantifier instantiations.4 TechniquesIn the following sections, we describe how we built up the automation. First, we are trying to find proofs, so that we will need (at least) a proof search engine. Next, we wish to model, to a large extent, the
52、way the proofs were done by hand. Apart from proof search, the other main method employed during the hand proofs was simplification. We describe how we augment the simplifier.Conditional simplification is a form of simplification where the simplifier is invoked recursively in an attempt to solve con
53、ditions on rewrites that may be applicable to the current goal. We argue that invoking simplification on these goals is often not the best way to proceed, and suggest an alternative.Next, when using simplification, it is a good idea to ensure that the simpset is confluent and terminating. We describ
54、e an implementation of completion. When using simplification, however, one also wants to utilise assumptions that arise during the course of a proof as rewrites. To ensure the set of rewrite rules are still confluent and terminating, one must provide some form of dynamic completion during the proof
55、search itself. We discuss how we tackled these issues.4.1 Proof SearchIn this section, we describe our basic system for proof search. This is a single conclusion, intuitionistic system suitable for backwards proof search. We eschew unification in favour of term enumeration. This has several interest
56、ing consequences when combining proof search with other methods. Note that we are only interested in the automation of an essentiallyfirst order system.4.1.1 Logical SystemTwo main systems of proof search are resolution and tableaux. For automation in an interactive setting, resolution is too unnatu
57、ral. For this reason, tableaux are more promising. We therefore restrict our attention to tableaux based systems. Tableaux systems typically proceed by negating the goal and searching for a contradiction. We even consider that this is to o unnatural. We therefore focus on tableaux systems that execu
58、te directly in standard logical systems.Using such a system has significant advantages in terms of implementation complexity, since we can simply search at the level of HOL goals using more-or-less standard tactics. This also has advantages in terms of naturality, since the user is already familiar
59、with proof in such a system, and feedback, since we can present failing branches directly to the user, who does not have to translate the results from some alternative proof system.Single conclusion systems are unsuited to classical pro of, which is much better supported by multiple conclusion systems. However multiple conclusion systems are unnatural. If we are interested in classica
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科研機(jī)構(gòu)行業(yè)實(shí)驗(yàn)室安全保障
- 咨詢服務(wù)保安員工作總結(jié)
- 公司注冊(cè)代理合同三篇
- 動(dòng)漫游戲行業(yè)會(huì)計(jì)的特點(diǎn)總結(jié)
- 2023年浙江省杭州市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 《合理使用中成藥》課件
- 高三學(xué)習(xí)計(jì)劃書
- 河北省唐山市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版隨堂測(cè)試(下學(xué)期)試卷及答案
- 2024年防沉劑項(xiàng)目資金籌措計(jì)劃書
- 顧客檢查表(完整版)
- 生物化學(xué)期末考試題庫(kù)與答案
- 山東昌樂(lè)二中的“271高效課堂”
- 人教版高中物理新舊教材知識(shí)對(duì)比
- 國(guó)際結(jié)算期末復(fù)習(xí)試卷5套及參考答案
- 六年級(jí)上冊(cè)數(shù)學(xué)圓中方方中圓經(jīng)典題練習(xí)
- 現(xiàn)場(chǎng)組織機(jī)構(gòu)框圖及說(shuō)明
- 《城鎮(zhèn)燃?xì)夤芾項(xiàng)l例》解讀
- 七年級(jí)數(shù)學(xué)幾何證明題(典型)
- X62W萬(wàn)能銑床電氣原理圖解析(共18頁(yè))
- 小康煤礦水文地質(zhì)類型劃分報(bào)告
- (完整版)中央空調(diào)現(xiàn)場(chǎng)勘察信息表
評(píng)論
0/150
提交評(píng)論