油水混合液物性及流動(dòng)規(guī)律研究_第1頁
油水混合液物性及流動(dòng)規(guī)律研究_第2頁
油水混合液物性及流動(dòng)規(guī)律研究_第3頁
油水混合液物性及流動(dòng)規(guī)律研究_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、附件2論文中英文摘要格式作者姓名:王瑋論文題目:油水混合液物性及流動(dòng)規(guī)律研究作者簡介:王瑋,男,1982年5月出生于河北省廊坊市,2006年9月師從于中國石油大學(xué)(北京)宮敬教授,于2009年6月獲工學(xué)博士學(xué)位。中文摘要: 在石油工業(yè)中,未經(jīng)處理或只經(jīng)過初步處理的原油、礦化水在管道中共同流動(dòng)的情況十! 分普遍。在油出集輸系統(tǒng)屮,油水兩相混輸工藝的采用較油水分離后再分別輸送的工藝具有1 明顯的經(jīng)濟(jì)效益。通常油出集輸管網(wǎng)的投資約占地面工程總投資的40%,集輸能耗甚至占生 :產(chǎn)總能耗的一半以上,而對于邊際油出或海洋油出,建設(shè)及運(yùn)行管理的費(fèi)用將更加龐大。因: ;此,如果采用多相混輸方式,將井口產(chǎn)出液通

2、過混輸管道輸送至后方或陸上處理場集屮處理,i :則可大幅度地降低一次性工程投資以及后期運(yùn)行成本。并可使一些在分輸工藝技術(shù)條件下不 1具備開采價(jià)值的邊際油出獲得經(jīng)濟(jì)有效的開發(fā)。 $ !由于原油屮含有膠質(zhì)、瀝青質(zhì)及同相小顆粒等天然乳化劑物質(zhì),含水原油在開采和輸送 i過程屮,極易生成穩(wěn)定的油包水乳狀液。目前世界上開采的以乳狀液形式為主的原油接近原$ i油總產(chǎn)量的80%,而我國的石油資源多為易凝高粘原油,如遼河、渤海稠油等,當(dāng)這些稠油: ;與水形成油包水乳狀液后,其粘度大大升高且流動(dòng)性極差。同時(shí),乳狀液的流動(dòng)往往呈現(xiàn)出; i菲牛頓流體的特性,這些因索都增加了輸送過程的難度。因此,如何準(zhǔn)確的掌握稠油包水

3、乳i 狀液的物性特點(diǎn),科學(xué)的預(yù)測管內(nèi)稠油-水兩相流動(dòng)的規(guī)律,對管道的安全和經(jīng)濟(jì)運(yùn)行具有重! ?要的指導(dǎo)意義。 ? ; 本文通過開展基于相似性分析的高粘基礎(chǔ)油-水、現(xiàn)場稠油-水兩相流動(dòng)對比實(shí)驗(yàn)研究,; 比較了兩者流動(dòng)規(guī)律的區(qū)別與聯(lián)系,包插流型、壓降、尤其是相轉(zhuǎn)換規(guī)律的異同點(diǎn)。發(fā)現(xiàn)并: :研究了高粘油-水、稠油-水流動(dòng)過程中的特殊現(xiàn)象局部相轉(zhuǎn)換現(xiàn)象,比較了局部相轉(zhuǎn)換: 1前后壓降及有效粘度的變化規(guī)律,并分析了其產(chǎn)生的原因。由此得岀結(jié)論,稠油-水管流的相 丫轉(zhuǎn)換過程,實(shí)質(zhì)上偏離了通常意義上的反相,即連續(xù)相與分散相之間的相互轉(zhuǎn)換,而是一種? :受稠油-水乳化特征影響的相轉(zhuǎn)換過程。并由此深入思考,提出:

4、一方面,需要從機(jī)理層面進(jìn): ;一步分析影響油水休系反相過程的本質(zhì);另一方面,需要深入認(rèn)識乳化后稠油包水乳狀液的; 物性及流變特性,由此進(jìn)一步揭示稠油-水兩相管流的流動(dòng)特性及規(guī)律。(基于上述研究成果,? ?已發(fā)表3篇高水平學(xué)術(shù)論文,參見本附件1屮代表性成果3-5o) f 一方面,從機(jī)理層面進(jìn)一步分析影響油水體系反相過程的本質(zhì)。結(jié)合對分散相液滴生成 :的微米級界面特性實(shí)驗(yàn)研究,將整個(gè)液滴生成過程劃分為四個(gè)階段,并選取液滴生成的第二、: i三階段,作為微觀液-液聚并實(shí)驗(yàn)的研究對象。通過改變油水休系的液-液聚并特性,從機(jī)理: i層面分析了液-液聚并特性對油-水反相過程的影響。由此進(jìn)一步揭示:油水休系屮

5、微觀液 1液聚并特性的改變,是影響油水休系反相過程的本質(zhì)原因。(基于上述研究成果,已發(fā)表2篇丫 :高水平學(xué)術(shù)論文,參見本附件1屮代表性成果i-2o) :另一方面,稠油-水管流流動(dòng)規(guī)律研究的深入,需要建立在更深入的稠油包水乳狀液物性 及流變規(guī)律研究基礎(chǔ)上。而實(shí)驗(yàn)室內(nèi)對稠油包水乳狀液物性及流變性的研究,需要以可重復(fù) 的乳狀液制備過程為依托,以此保證所獲研究成果的準(zhǔn)確性。因此,木文首先總結(jié)了可重復(fù) 的乳狀液制備方法,并系統(tǒng)分析了影響油水乳化特征的機(jī)理。結(jié)合單和流體攪拌剪切的相關(guān)成果,定性分析了影響油水乳化特征的關(guān)鍵機(jī)理,并得出 結(jié)論:若可以再現(xiàn)油水乳化過程的剪切丿力史,復(fù)雜的油水乳化過程實(shí)質(zhì)上是具有

6、較高可重復(fù) 性的。同時(shí),分析了影響乳化過程的關(guān)鍵因素,并重點(diǎn)研究了制備溫度、攪拌時(shí)間等因素對 乳狀液制備過程的影響,結(jié)合對攪拌過程輸入扭矩的時(shí)時(shí)監(jiān)控,確定了油水乳化過程中所經(jīng) 歷的剪切歷史,是影響油水乳化特征的木質(zhì)。以可重復(fù)的乳狀液制備過程為實(shí)驗(yàn)基礎(chǔ),系統(tǒng)分析了油水乳化特征對形成稠油-水分散體 系宏觀流變特性及微觀分布特性的綜合影響。這其中結(jié)合顯微鏡觀察及后期的圖像處理與統(tǒng) 計(jì),實(shí)現(xiàn)了對乳狀液微觀特性的分析與測量。最后,通過引入液滴雷諾數(shù),將剪切率(影響 宏觀流變特性的主要因素)及微觀液滴分布(表征微觀分散特性的因素)原木彼此孤立的影 響因素有機(jī)的結(jié)合起來。驗(yàn)證表明,對呈非牛頓性的稠油包水乳狀

7、液體系,液滴雷諾數(shù)能夠 很好的表征宏觀與微觀影響因素對其物性及流變特性的共同影響。同時(shí),針對現(xiàn)自乳狀液粘度模型沒有涵蓋微觀特性影響的局限性,結(jié)合上述研究成果, 以有效介質(zhì)理論為基礎(chǔ),在經(jīng)典pal & rhodes乳狀液粘度預(yù)測模型基礎(chǔ)上,進(jìn)一步拓展了其 非牛頓因了的物理意義和影響因素,加入了微觀液滴分布對非牛頓特性的影響,由此提出了 包含宏觀因素影響剪切率、含水率、連續(xù)和/分散和粘度,及微觀影響因素微觀液滴 分布共同影響的機(jī)理模型。結(jié)合現(xiàn)場稠油、水取樣乳狀液驗(yàn)證分析,結(jié)果表明,該模型對中、 高含水率時(shí)的非牛頓稠油包水乳狀液體系具有很好的預(yù)測精度。(基于該創(chuàng)新點(diǎn),在國家級期 刊化工學(xué)報(bào)上

8、發(fā)表學(xué)術(shù)論文1篇,在國家級期刊石油學(xué)報(bào)上發(fā)表學(xué)術(shù)論文1篇(發(fā) 表日期2010.11),參見博士論文在學(xué)期間研究成果。)此外,針對非牛頓稠油包水乳狀液粘度測量中發(fā)現(xiàn)的問題,即乳狀液在表現(xiàn)出剪切稀釋 性的同時(shí),仍表現(xiàn)出隨剪切時(shí)間延長粘度下降的依時(shí)特性。首次探究了非牛頓型稠油包水乳 狀液的觸變性規(guī)律,系統(tǒng)分析了宏觀及微觀諸因素對觸變性的影響,討論了所具觸變性的可 恢復(fù)性特征,并依據(jù)上述特征建立了表征該非牛頓乳狀液觸變性的預(yù)測模型。最終,提出宏 觀剪切作用同微觀分布特性間的相互作用與影響,是油水體系呈現(xiàn)出觸變性的木質(zhì)。綜z,論文采用實(shí)驗(yàn)研究和理論分析相結(jié)合的方法,從更深層次研究了油-水混合液物性 及流

9、動(dòng)規(guī)律這一看似普通的課題;對宏觀與微觀特性間的和互作用的分析與把握,始終貫穿 于整個(gè)論文的研究思路。論文研究成果具有較好的理論深度及工程應(yīng)用價(jià)值,取得了較好的關(guān)鍵詞:油水兩相流;液液聚并特性;反相;稠油包水乳狀液;表觀粘度;微觀液滴分布;觸變性investigation of oil and water two phase flow and properties ofwater-in-crude oil emulsionwang weiabstract in petroleum industry, it,s a common phenomenon that crude oil and wate

10、r two phases flow ;t together in the transporting pipeline. since crude oil usually contains some natural emulsifiers as :令r asphaltene, resin and small particles, it?s easier to form water-in-crude oil emulsion during drilling : n facility and transporting process. in china, heavy crude oils take a

11、 huge percentage of its total oil :xv production. even the transportation of single heavy oil phase is a difficult task, however, it's ;mv discovered that it,s even harder when heavy oil and water phase joined together and result in a;v stable water-in-heavy crude oil emulsion. the apparent visc

12、osity of the formed emulsion is greatly : increased, while it usually appears to be a non-newtonian fluid. as a result, it,s essentially ipn important to obtain the physical properties and flow characteristic of the formed emulsion, which :xx would be the guidance for the management of multiphase pi

13、peline.: through the experiments of high viscosity mineral oil-water and heavy crude oil-water two k phase flow, flow characteristic such as flow patterns, pressure drop and phase inversion :oa phenomenon are compared. it's discovered that the phase inversion phenomenon during heavy :n crude oil

14、-water flow is different from its theoretical definition. instead, it,s obviously influenced by :x m the emulsification of oil and water phase. based on upper understanding, it's strongly recommend to m2 further investigate the key point of phase inversion and properties of water-in-heavy crude

15、oil emulsion, which could help to gain more understandings about their pipe flow character.;(publications 3-5 in appendix 1 are based on upper understanding.):n observations on single drop formation from a capillary tube are earned out, while four ;a n different stages of the drop formation are iden

16、tified the attaching and detaching forces which act:hv on the drop during formation are calculated based on experimentally measured parameters. stage ;hv two and three is recommended and chosen for further coalescence experiment. binary coalescence j2tj of water drops forming through capillaries in

17、an immiscible stagnant oil phase is studied and ;sc coalescence rate is changed with the add-in of glycerol as a third material but not a surfactant. the ?fh reduced water drop coalescence times in the presence of glycerol are responsible for the decreased、nk water fraction required for phase invers

18、ion of the organic-aqueous dispersion. (publications 1-2 in :nkv appendix 1 are based on upper understanding.)-vthe preparation of water-in-heavy crude oil emulsion is investigated, and main attentions are :fl focused on the repeatable preparation method or process. it will help to support the follo

19、wing research on the shearing thin and thixotropic behavior of the emulsion. it,s then confirmed that the shear rate is the key parameter and the preparation process can be repeated if the shearing history is the same droplets are observed through the microscope and drop size distributions are obtai

20、ned statistically. particle reynolds number (nre.p) are introduced and studied, while it's found that it can reflect the influence of shear rate in macro scale and drop diameter in micro scale together on the apparent viscosity of emulsion.since the published viscosity prediction models for emul

21、sion haverft considered the influence of drop size distribution, and previous results about drop size distribution have shown its importance, an improved viscosity prediction model is carried out based on the viscosity prediction models of pal & rhodes. the effect of drop size distribution is co

22、nsidered and added in the non-newtonian coefficient. comparison results show that the improved model can predict the viscosity well at moderate and high water fraction. (one publication in journal of chemical industry and engineering (china) are based on upper understanding, while another paper has

23、been published in acta petrolei sinica 2010.11.)the thixotropic behavior of non-newtonian water-in-heavy crude oil is firstly investigated and the effects of water fraction, shear rate, temperature, drop size and etc. are studied. as well, the recovery behavior is checked during the experiment. it's analyzed and concluded that the appearance of thixotropy is due to the variation of drop size distribution. all in all, the drop size distr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論