高等數(shù)學(xué)常用極限求法_第1頁(yè)
高等數(shù)學(xué)常用極限求法_第2頁(yè)
高等數(shù)學(xué)常用極限求法_第3頁(yè)
高等數(shù)學(xué)常用極限求法_第4頁(yè)
高等數(shù)學(xué)常用極限求法_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、-作者xxxx-日期xxxx高等數(shù)學(xué)常用極限求法【精品文檔】求函數(shù)極限的方法和技巧 摘要: 本文就關(guān)于求函數(shù)極限的方法和技巧作了一個(gè)比較全面的概括、綜合。關(guān)鍵詞:函數(shù)極限引言在數(shù)學(xué)分析與微積分學(xué)中,極限的概念占有主要的地位并以各種形式出現(xiàn)而貫穿全部?jī)?nèi)容,因此掌握好極限的求解方法是學(xué)習(xí)數(shù)學(xué)分析和微積分的關(guān)鍵一環(huán)。本文就關(guān)于求函數(shù)極限的方法和技巧作一個(gè)比較全面的概括、綜合,力圖在方法的正確靈活運(yùn)用方面,對(duì)讀者有所助益。主要內(nèi)容一、求函數(shù)極限的方法1、運(yùn)用極限的定義例: 用極限定義證明:證: 由取 則當(dāng) 時(shí),就有 由函數(shù)極限定義有: 2、利用極限的四則運(yùn)算性質(zhì)若 (I) (II)(III)若 B0

2、則: (IV) (c為常數(shù))上述性質(zhì)對(duì)于例:求 解: =3、約去零因式(此法適用于)例: 求解:原式= = =4、通分法(適用于型)例: 求 解: 原式= 5、利用無(wú)窮小量性質(zhì)法(特別是利用無(wú)窮小量與有界量之乘積仍為無(wú)窮小量的性質(zhì))設(shè)函數(shù)f(x)、g(x) 滿足:(I)(II) (M為正整數(shù))則:例: 求 解: 由 而 故 原式 =6、利用無(wú)窮小量與無(wú)窮大量的關(guān)系。 (I)若: 則 (II) 若: 且 f(x)0 則 例: 求下列極限 解: 由 故 由 故 =7、等價(jià)無(wú)窮小代換法 設(shè) 都是同一極限過程中的無(wú)窮小量,且有: , 存在,則 也存在,且有= 例:求極限 解: =注: 在利用等價(jià)無(wú)窮小

3、做代換時(shí),一般只在以乘積形式出現(xiàn)時(shí)可以互換,若以和、差出現(xiàn)時(shí),不要輕易代換,因?yàn)榇藭r(shí)經(jīng)過代換后,往往改變了它的無(wú)窮小量之比的“階數(shù)”8、利用兩個(gè)重要的極限。 但我們經(jīng)常使用的是它們的變形:例:求下列函數(shù)極限 9、利用函數(shù)的連續(xù)性(適用于求函數(shù)在連續(xù)點(diǎn)處的極限)。例:求下列函數(shù)的極限 (2) 10、變量替換法(適用于分子、分母的根指數(shù)不相同的極限類型)特別地有: m、n、k、l 為正整數(shù)。例:求下列函數(shù)極限 、n 解: 令 t= 則當(dāng) 時(shí) ,于是原式=由于=令: 則 = =11、 利用函數(shù)極限的存在性定理 定理: 設(shè)在的某空心鄰域內(nèi)恒有 g(x)f(x)h(x) 且有: 則極限 存在, 且有 例

4、: 求 (a>1,n>0)解: 當(dāng) x1 時(shí),存在唯一的正整數(shù)k,使 k xk+1于是當(dāng) n>0 時(shí)有: 及 又 當(dāng)x時(shí),k 有 及 =012、用左右極限與極限關(guān)系(適用于分段函數(shù)求分段點(diǎn)處的極限,以及用定義求極限等情形)。定理:函數(shù)極限存在且等于A的充分必要條件是左極限及右極限都存在且都等于A。即有:=A例:設(shè)= 求及由 13、羅比塔法則(適用于未定式極限)定理:若此定理是對(duì)型而言,對(duì)于函數(shù)極限的其它類型,均有類似的法則。注:運(yùn)用羅比塔法則求極限應(yīng)注意以下幾點(diǎn):1、 要注意條件,也就是說,在沒有化為時(shí)不可求導(dǎo)。2、 應(yīng)用羅比塔法則,要分別的求分子、分母的導(dǎo)數(shù),而不是求整個(gè)分

5、式的導(dǎo)數(shù)。3、 要及時(shí)化簡(jiǎn)極限符號(hào)后面的分式,在化簡(jiǎn)以后檢查是否仍是未定式,若遇到不是未定式,應(yīng)立即停止使用羅比塔法則,否則會(huì)引起錯(cuò)誤。4、當(dāng) 不存在時(shí),本法則失效,但并不是說極限不存在,此時(shí)求極限須用另外方法。例: 求下列函數(shù)的極限 解:令f(x)= , g(x)= l, 由于但從而運(yùn)用羅比塔法則兩次后得到 由 故此例屬于型,由羅比塔法則有:14、利用泰勒公式對(duì)于求某些不定式的極限來(lái)說,應(yīng)用泰勒公式比使用羅比塔法則更為方便,下列為常用的展開式:1、2、3、4、5、6、上述展開式中的符號(hào)都有:例:求解:利用泰勒公式,當(dāng) 有于是 =15、利用拉格朗日中值定理定理:若函數(shù)f滿足如下條件: (I)

6、f 在閉區(qū)間上連續(xù) (II)f 在(a ,b)內(nèi)可導(dǎo)則在(a ,b)內(nèi)至少存在一點(diǎn),使得此式變形可為: 例: 求 解:令 對(duì)它應(yīng)用中值定理得即: 連續(xù)從而有: 16、求代數(shù)函數(shù)的極限方法(1)有理式的情況,即若:(I)當(dāng)時(shí),有 (II)當(dāng) 時(shí)有:若 則 若 而 則若,則分別考慮若為的s重根,即: 也為的r重根,即: 可得結(jié)論如下:例:求下列函數(shù)的極限 解: 分子,分母的最高次方相同,故 = 必含有(x-1)之因子,即有1的重根 故有:(2)無(wú)理式的情況。雖然無(wú)理式情況不同于有理式,但求極限方法完全類同,這里就不再一一詳述.在這里我主要舉例說明有理化的方法求極限。 例:求解: 二、多種方法的綜合運(yùn)用上述介紹了求解極限的基本方法,然而,每一道題目并非只有一種方法。因此我們?cè)诮忸}中要注意各種方法的綜合運(yùn)用的技巧,使得計(jì)算大為簡(jiǎn)化。例:求 解法一: = 注:此法采用羅比塔法則配合使用兩個(gè)重要極限法。解法二: =注:此解法利用“三角和差化積法”配合使用兩個(gè)重要極限法。解法三:注:此解法利用了兩個(gè)重要極限法配合使用無(wú)窮小代換法以及羅比塔法則解法四:注:此解法利用了無(wú)窮小代換法配合使用兩個(gè)重要極限

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論