




已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1QUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYACENTRALUNIVERSITYSURYAMANINAGAR,TRIPURA799130,INDIAMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA,WESTBENGAL700032,INDIAAICTEEMERITUSFELLOWDEBOTOSHINDIATIMESCOM,MITANASIPURIGMAILCOM,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTTHISPAPERINVESTIGATESTHEMULTIRESOLUTIONLEVEL1ANDLEVEL2QUOTIENTBASEDFUSIONOFTHERMALANDVISUALIMAGESINTHEPROPOSEDSYSTEM,THEMETHOD1NAMELY“DECOMPOSETHENQUOTIENTFUSELEVEL1”ANDTHEMETHOD2NAMELY“DECOMPOSERECONSTRUCTTHENQUOTIENTFUSELEVEL2”BOTHWORKONWAVELETTRANSFORMATIONSOFTHEVISUALANDTHERMALFACEIMAGESTHEWAVELETTRANSFORMISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONWITHOUTANYLOSSTHISAPPROACHISBASEDONADEFINITIONOFANILLUMINATIONINVARIANTSIGNATUREIMAGEWHICHENABLESANANALYTICGENERATIONOFTHEIMAGESPACEWITHVARYINGILLUMINATIONTHEQUOTIENTFUSEDIMAGESAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORDIMENSIONREDUCTIONANDTHENTHOSEIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONMLPTHEPERFORMANCESOFBOTHTHEMETHODSHAVEBEENEVALUATEDUSINGOTCBVSANDIRISDATABASESALLTHEDIFFERENTCLASSESHAVEBEENTESTEDSEPARATELY,AMONGTHEMTHEMAXIMUMRECOGNITIONRESULTIS100KEYWORDSDISCRETEWAVELETTRANSFORM,INVERSEDISCRETEWAVELETTRANSFORM,QUOTIENTFUSEDIMAGE,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRONMLP,FACIALRECOGNITION,CLASSIFICATION,OTCBVSANDIRISDATABASE1INTRODUCTIONFACERECOGNITIONISAVITALPROBLEMINCOMPUTERVISIONTHOUGHFACERECOGNITIONSYSTEMSSHOWCONSIDERABLEIMPROVEMENTINSUCCESSIVECOMPETITIONS12,STILLITISCONSIDEREDUNSOLVED3FACERECOGNITIONNEEDSHIGHDEGREEOFACCURACYASITSMOSTAPPLICATIONSAREINPUBLICSECURITY,LAWENFORCEMENTANDCOMMERCE,SUCHASMUGSHOTDATABASEMATCHING,IDENTITYAUTHENTICATIONFORCREDITCARDORDRIVERLICENSE,ACCESSCONTROL,INFORMATIONSECURITYANDINTELLIGENTSURVEILLANCE4THEREAREALOTOFFACTORSLIKE,ILLUMINATIONVARIATION,POSEVARIATION,FACIALEXPRESSIONCHANGESETCWHICHAFFECTTHEFACERECOGNITIONPERFORMANCEAMONGALLTHESE,ILLUMINATIONPROBLEMHASRECEIVEDMUCHATTENTIONINRECENTYEARSQUOTIENTIMAGINGTECHNIQUEISONEOFTHESOLUTIONTOTHISPROBLEMTHISMETHODISSIMPLEANDSIGNIFICANTQUOTIENTIMAGEISANIMAGERATIOBETWEENATESTIMAGEANDALINEARCOMBINATIONOFTHREEIMAGESILLUMINATEDBYNONCOPLANARLIGHTS,DEPENDSONLYONTHEALBEDOINFORMATION,ANDTHEREFOREISILLUMINATIONFREE5THEQUOTIENTIMAGECANBECONSIDEREDASFUSEDQUOTIENTIMAGEASBOTHTHEVISUALANDITSCORRESPONDINGTHERMALIMAGESHAVEBEENUSEDTOGENERATEITTHEPROCESSINGSTEPSOFTHETWOMETHODSUSEDTOGENERATEQUOTIENTIMAGESARESHOWNINTHEFIG1AANDFIG1BINBOTHTHETWOMETHODSFORIMAGEDECOMPOSITIONPURPOSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDFORBOTHTHEVISUALANDTHERMALIMAGESBUTINMETHOD2FORRECONSTRUCTIONPURPOSETHEINVERSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDINMETHOD1,DECOMPOSITIONHASBEENDONEATLEVEL1TOGENERATETHEFUSEDQUOTIENTIMAGE,ALLTHECOEFFICIENTSOFTHEDECOMPOSEDIMAGEHAVEBEENUSEDINCASEOFMETHOD2,DISCRETE2DWAVELETTRANSFORMHASBEENUSEDATLEVEL2TODECOMPOSETHEVISUALANDTHERMALIMAGESBUTTOREGENERATETHEIMAGESONLYAPPROXIMATIONCOEFFICIENTSHAVEBEENUSEDWITHTHENEWRECONSTRUCTEDVISUALANDTHERMALIMAGESTHEQUOTIENTIMAGESHAVEBEENGENERATEDINTERMSOFDESIGNINGAFACIALRECOGNITIONSYSTEMWITHHIGHACCURACYLEVEL,THEMAINCRUCIALPOINTISTHECHOICEOFFEATUREEXTRACTORINTHISCONNECTION,PRINCIPALCOMPONENTANALYSISPCAHASBEENUSEDFORDIMENSIONREDUCTIONPURPOSEPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHEIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG2RECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUES25THEEIGENFACESWHICHARETHESETOFEIGENVECTORSISTHENUSEDTODESCRIBEFACEIMAGES6THESEEIGENFACESARETHENCLASSIFIEDUSINGMULTILAYERPERCEPTRONMLPDIFFERENTEXISTINGILLUMINATIONINVARIANTMETHODSHAVEBEENDISCUSSEDRESEARCHERSHAVEPROPOSEDDIFFERENTSOLUTIONSTOILLUMINATIONPROBLEM,WHICHINCLUDEINVARIANTFEATUREBASEDMETHOD7,3DLINEARILLUMINATIONSUBSPACEMETHOD8,LINEAROBJECTCLASS9,ILLUMINATIONANDPOSEMANIFOLD10,ILLUMINATIONCONES13,HARMONICSUBSPACE17,LAMBERTIANREFLECTANCEANDLINEARSUBSPACE14ANDINDIVIDUALPCACOMBININGTHESYNTHESIZEDIMAGES1516THEORETICALLYTHEILLUMINATIONCONEMETHODILLUSTRATEDTHATFACEIMAGESDUETOVARYINGLIGHTINGDIRECTIONSFORMANILLUMINATIONCONE1INTHISALGORITHM,BOTHSELFSHADOWANDCASTSHADOWWERECONSIDEREDANDITSEXPERIMENTALRESULTSOUTPERFORMEDMOSTEXISTINGMETHODSRAMAMOORTHI1719ANDBASRI2021INDEPENDENTLYDEVELOPEDTHESPHERICALHARMONICREPRESENTATIONTHISORIGINALREPRESENTATIONEXPLAINEDWHYTHEIMAGESOFANOBJECTUNDERDIFFERENTLIGHTINGCONDITIONSCANBEDESCRIBEDBYLOWDIMENSIONALSUBSPACEINSOMEPREVIOUSEMPIRICALEXPERIMENTS2324AMONGALLTHESEALGORITHMSTHEQUOTIENTIMAGEMETHODISSIMPLEANDPRACTICALLYUSEFULALSOQUOTIENTIMAGEBYSHASHUAANDRIKLINRAVIVISMAINLYDESIGNEDFORDEALINGWITHILLUMINATIONCHANGESINFACERECOGNITION262728JACOBSETAL30INTRODUCEDANOTHERCONCEPTOFQUOTIENTIMAGE,WHICHISTHERATIOOFTWOIMAGESJACOBSSMETHODCONSIDERSTHELAMBERTIANMODELWITHOUTSHADOWANDASSUMESTHESURFACEOFTHEOBJECTISSMOOTH5RETINEX,WHICHISACOMBINATIONOFTHEWORDSRETINAANDCORTEX,ISANALGORITHMTOMODELTHEHUMANVISUALSYSTEM22THOUGHITSORIGINALPURPOSEISFORCOLORCONSTANCY,BUTPERFORMSWELLASACONTRASTENHANCEMENTALGORITHMTOOAFAMOUSALGORITHMCALLEDFRANKLEMCCANNVARIATIONHASBEENINTRODUCEDBYMCCANNANDFRANKLE33ANDTHISALGORITHMWORKSBYOPERATINGONTHEIMAGEPIXELSINTHELOGDOMAINTHISINVOLVESFOURBASICSTEPSRATIO,PRODUCT,RESETANDAVERAGE29INTHISAPPROACHTHEMAINCONTRIBUTIONISTHEGENERATIONOFFUSEDQUOTIENTIMAGESI/JFROMBOTHTHECOEFFICIENTSOFVISUALIANDTHERMALJIMAGESINTHISPAPER,FIRSTTIMETHEAUTHORSHAVECONTRIBUTEDTHEQUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONTHEPAPERISORGANIZEDASFOLLOWSSYSTEMOVERVIEWHASBEENGIVENINSECTION2WHICHINCLUDESTHEDESCRIPTIONOFVISUALANDTHERMALFACEIMAGES,MULTIRESOLUTIONANALYSIS,THEIMAGEDECOMPOSITIONANDRECONSTRUCTIONPROCESS,QUOTIENTIMAGINGMETHOD,PRINCIPALCOMPONENTANALYSISPCAANDARTIFICIALNEURALNETWORKSECTION3SHOWSANDANALYSESTHEEXPERIMENTALRESULTSUSINGOTCBVSANDIRISDATABASESTHECOMPARISONBETWEENDIFFERENTQUOTIENTIMAGINGMETHODSARESHOWNINSECTION4ANDFINALLYTHECONCLUSIONISMADEINSECTION52SYSTEMOVERVIEWHERE,ATECHNIQUEFORHUMANFACERECOGNITIONUSINGQUOTIENTIMAGESHASBEENPRESENTTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1AFORMETHOD1ANDINFIG1BFORMETHOD2ALLTHEPROCESSINGSTEPSTOGENERATEQUOTIENTIMAGESUSEDINTWOMETHODSARESHOWNINTHECORRESPONDINGBLOCKDIAGRAMSINCASEOFMETHOD1INFIRSTSTEPSINGLELEVELDECOMPOSITIONHASBEENDONEFORBOTHTHEVISUALANDTHERMALIMAGESQUOTIENTIMAGESAREGENERATEDFROMALLTHECOEFFICIENTSAPPROXIMATIONANDDETAILSCOEFFICIENTSOFDECOMPOSEDVISUALANDTHERMALIMAGESMETHOD2ISSLIGHTLYDIFFERENTFROMMETHOD1INTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVEL2HASBEENDONEUSINGDAUBECHIESWAVELETTHEREASONBEHINDUSINGLEVEL2DECOMPOSITIONISTHATTHEHIGHERTHEDECOMPOSITIONLEVELSARETHEMOREADVANTAGEOUSBECAUSETHENUMBEROFHIGHERANDLOWERFREQUENCYSUBBANDSWILLINCREASEINTHISCONNECTIONTHESIZEOFTHEIMAGEWILLDECREASEANDTHUSTHEPROCESSINGSPEEDWILLINCREASE38THENTHEIMAGESARERECONSTRUCTEDFROMTHECORRESPONDINGAPPROXIMATIONCOEFFICIENTSINCASEOFBOTHVISUALANDTHERMALIMAGESTHENQUOTIENTIMAGESAREGENERATEDWITHTHESECOEFFICIENTSTHESETRANSFORMEDIMAGESARESEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEPCAISCOMPUTEDUSINGTRAININGIMAGESALLTHETRAININGANDTESTINGIMAGESAREPROJECTEDINTOTHECREATEDEIGENSPACEANDNAMEDASQUOTIENTFUSEDEIGENFACESONCETHESECONVERSIONSAREDONETHENEXTTASKISTOUSEMULTILAYERPERCEPTRONMLPTOCLASSIFYTHEMAMULTILAYERFEEDFORWARDNETWORKISUSEDFORCLASSIFICATION21MULTIRESOLUTIONANALYSISINCOMPUTERVISION,ITISDIFFICULTTOANALYZETHEINFORMATIONCONTENTOFANIMAGEDIRECTLYFROMTHEGRAYLEVELINTENSITYOFTHEIMAGEPIXELSINDEED,THISVALUEDEPENDSUPONTHELIGHTINGCONDITIONSGENERALLY,THESTRUCTURESWEWANTTORECOGNIZEHAVEVERYDIFFERENTSIZESHENCE,ITISNOTPOSSIBLETODEFINEAPRIORIANOPTIMALRESOLUTIONFORANALYZINGIMAGESFUSEDQUOTIENTVISUALIMAGEDECOMPOSEDVISUALIMAGEWITHLEVEL1DWTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG3FIG1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREFORAMETHOD1ANDBMETHOD2WAVELETDECOMPOSITIONISTHEMOSTWIDELYUSEDMULTIRESOLUTIONTECHNIQUEINIMAGEPROCESSING34INTHISWORK,2DDISCRETEWAVELETTRANSFORMHASBEENUSEDTOEXTRACTMULTIPLESUBBANDFACEIMAGESTHESESUBBANDIMAGESCONTAINAPPROXIMATIONCOEFFICIENTSMATRIXANDDETAILSCOEFFICIENTSMATRICESLIKEHORIZONTAL,VERTICALANDDIAGONALCOEFFICIENTSOFFACESATVARIOUSSCALESONELEVELWAVELETDECOMPOSITIONOFAFACEIMAGEISSHOWNINFIG2FIG2SAMPLEONELEVELWAVELETDECOMPOSEDIMAGEINFIG2,FORBOTHTHEMETHODSA1ISTHEAPPROXIMATIONCOEFFICIENT,V1,H1ANDD1ARETHEVERTICAL,HORIZONTALANDDIAGONALDETAILSCOEFFICIENTSRESPECTIVELYSINGLELEVELDECOMPOSITIONISUSEDINBOTHVISUALANDTHERMALIMAGESFORMETHOD1AN80100PIXELSIMAGEISTAKENASINPUTANDAFTERDECOMPOSITIONFOUR4050PIXELSRESOLUTIONSUBBANDIMAGESA1,H1,V1ANDD1AREOBTAINEDINCASEOFMETHOD2,BOTHTHEINPUTIMAGESVISUALANDTHERMALAREOFSIZE80100AFTERSINGLELEVELDECOMPOSITION,ALLTHEGENERATEDCOEFFICIENTSA1,H1,V1ANDD1AREOFSIZE4050AGAINDECOMPOSITIONATLEVEL2HASBEENAPPLIEDONLYINAPPROXIMATIONCOEFFICIENTA1ANDAFTERTHAT,USINGONLYAPPROXIMATIONCOEFFICIENT,GETTINGAFTERLEVEL2DECOMPOSITION,THEQUOTIENTIMAGESOFSIZE4050HASBEENGENERATED22DAUBECHIESWAVELETTRANSFORMINTHISWORKDAUBECHIESDB1WAVELETHASBEENUSEDTODECOMPOSETHEIMAGESASWELLASTORECONSTRUCTTHEIMAGESALSODAUBECHIESDB1WAVELETISTHESAMEASHAARWAVELETSOTHEDISCUSSIONOFTHEHAARWAVELETISESSENTIALTOUNDERSTANDTHECONCEPTOFDAUBECHIESDB1WAVELETINMATHEMATICS,THEHAARWAVELETISACERTAINSEQUENCEOFFUNCTIONSTHISSEQUENCEWASPROPOSEDIN1909BYALFRDHAARHAARUSEDTHESEFUNCTIONSTOGIVEANEXAMPLEOFACOUNTABLEORTHONORMALSYSTEMFORTHESPACEOFSQUAREINTEGRABLEFUNCTIONSONTHEREALLINE18THEHAARWAVELETSMOTHERWAVELETFUNCTIONTCANBEDESCRIBEDAS101/2,11/21,0TTTOTHERWISE1ANDITSSCALINGFUNCTIONTCANBEDESCRIBEDAS101,0TTOTHERWISE2DAUBECHIESWAVELETTRANSFORMHASBEENUSEDINTHISWORKDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSA1V1H1D1IJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG4DEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTSCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHE2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION3ANDEQUATION4CA,CH,CV,CDDWT2X,WNAME3CA,CH,CV,CDDWT2X,LO_D,HI_D4INEQ3,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONINTHISWORKDB1HASBEENUSEDINCASEOFWNAMEEQ4LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG3DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS373839CONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTWEHAVERECONSTRUCTEDTHEIMAGESBASEDONTHEAPPROXIMATIONCOEFFICIENTMATRIXCAFINALLYTHERECONSTRUCTEDIMAGEISUSEDASTHEINPUTTOPCAFORDIMENSIONREDUCTIONTHE2DIMENSIONALINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION5ANDEQUATION6XIDWT2CA,CH,CV,CD,WNAME5XIDWT2CA,CH,CV,CD,LO_R,HI_R6INVERSEDISCRETEWAVELETTRANSFORMIDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYINTHEFIG4WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGERESPECTIVELYTHEABOVECONCEPTSOFDISCRETEWAVELETTRANSFORMDWTFUNCTIONANDINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONHAVEBEENUSEDFROMWAVELETTOOLBOXOFMATLAB7FIG3STEPSFORDECOMPOSITIONOFANIMAGEFORMETHOD1ANDMETHOD2FIG4STEPSFORRECONSTRUCTIONOFANIMAGEFORMETHOD223THEQUOTIENTFUSEDIMAGEOFTHERMALANDVISUALIMAGEIFTWOOBJECTSAREAANDB,WEDEFINETHEQUOTIENTIMAGEQBYTHERATIOOFTHEIRALBEDOFUNCTIONSAANDBCLEARLY,QISILLUMINATIONINVARIANTINTHEABSENCEOFANYDIRECTACCESSTOTHEALBEDOFUNCTIONS,ITHASBEENSHOWNTHATQCANNEVERTHELESSBERECOVERED,ANALYTICALLY,GIVENACOLUMNSCAJO_DI_D11ROWSO_DI_D22COLUMNSCAJ1CHJ1O_DI_D22COLUMNSCOLUMNSCVJ1HORIZONTALVERTICALCDROWSHORIZONTALDIAGONALAJ1ROWS1ROWSI_RO_RKEEPVERTICAL2HO_R2COLUMNSCOLUMNSCOLUMNSCOLUMNS22I_RO_RI_RCAJ1CHJ1CVJ1CDJ1WHERE,21O_RI_RUPSAMPLECOLUMNSINSERTZEROSATODDINDEXEDCOLUMNSUPSAMPLEROWSINSERTZEROSATODDINDEXEDROWSRECONSTRUCTIONLOWPASSFILTERDECOMPOSITIONHIGHPASSFILTERIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG5BOOTSTRAPSETOFIMAGESONCEQISRECOVERED,THEENTIREIMAGESPACEUNDERVARYINGLIGHTINGCONDITIONSOFOBJECTACANBEGENERATEDBYQANDTHREEIMAGESOFOBJECTBTHEDETAILSAREGIVENBELOWLET,STARTWITHTHECASEN1,IE,THEREISASINGLEOBJECT2IMAGESINTHEBOOTSTRAPSETLETTHEALBEDOFUNCTIONOFTHATOBJECTABEDENOTEDBYA,ANDLETTHETWOIMAGESBEDENOTEDBYA1,A2THEREFORE,AJANTSJ,WHERE,J1,2LETYBEANOTHEROBJECTOFTHECLASSWITHALBEDOYANDLETYSBEANIMAGEOFYILLUMINATEDBYSOMELIGHTINGCONDITIONS,IE,YSYNTSTHEQUOTIENTIMAGEQYOFOBJECTYAGAINSTOBJECTAISDEFINEDBY,YYAUVUVUVQ7WHEREU,VRANGEOVERTHEIMAGETHUS,THEIMAGEQYDEPENDSONLYONTHERELATIVESURFACETEXTUREINFORMATION,ANDTHUSISINDEPENDENTOFILLUMINATION40THEQUOTIENTIMAGEUSEDINTHISEXPERIMENTISTHEQUOTIENTOFTHEVISUALANDTHERMALIMAGEOFANOBJECTLET,THEVISUALIMAGEBEIANDTHETHERMALIMAGEBEJ,THENWECANCONSIDERTHEQUOTIENTIMAGECASFI/FJTHEABOVEMENTIONEDQUOTIENTIMAGINGTECHNIQUEISSAMEFORBOTHTHEMETHODSMETHOD1ANDMETHOD2BUTFIANDFJAREDIFFERENTFORMETHOD1ANDMETHOD2FORMETHOD1,FIRSTBOTHTHEVISUALANDTHERMALIMAGESHAVEBEENDECOMPOSEDATLEVEL1THEQUOTIENTIMAGESHAVEBEENGENERATEDUSINGALLTHEFOURCOEFFICIENTSOFTHEDECOMPOSEDIMAGESAPPROXIMATIONCOEFFICIENTANDDETAILSCOEFFICIENTSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,DIAGONALINCASEOFMETHOD2,FIRSTTHEVISUALANDTHERMALIMAGESAREDECOMPOSEDATLEVEL2ANDAFTERTHATBOTHTHEIMAGESARERECONSTRUCTEDUSINGTHEAPPROXIMATECOEFFICIENTSTHESEIMAGESAREDECOMPOSEDANDRECONSTRUCTEDUSINGWAVELETDECOMPOSITIONANDRECONSTRUCTIONFUNCTIONFINALLYTHEQUOTIENTIMAGEISGENERATEDFROMBOTHTHERECONSTRUCTEDVISUALANDTHERMALFUNCTIONS24IMAGEFUSIONRULESATTHETIMEOFGENERATINGFUSEDIMAGESOFCOEFFICIENTSAPPROXIMATEANDDETAILS,THEABSOLUTEMAXIMUMOFTHERMALANDVISUALIMAGESWASSELECTEDTHEFUSIONMETHODUSEDTOGENERATEFUSEDIMAGEOFWAVELETTOOLBOXISPRESENTINTHEEQ8DABSTABSVCTDVD8WHERE,DISTHEABSOLUTEMAXIMUMMATRIXOFTTHERMALIMAGEANDVVISUALIMAGE,ABSTANDABSVARETHEABSOLUTEMATRICESOFTANDVANDCISTHEGENERATEDFUSEDIMAGEOFTANDVNOWATTHETIMETOFINDTHEABSOLUTEVALUEOFCORRESPONDINGTHERMALANDVISUALCOEFFICIENTSITWILLCALCULATETHEINTENSITYOFTHEEACHPIXELINCASEOFEQUATION8,ITWILLCHECKTHAT,XYXYTB,THENFORTHEFUSEDIMAGEOFCOEFFICIENTITWILLDOTHEFOLLOWINGOPERATIONGIVENINEQ9XYXYXYFTV9WHEREFXYISTHEPIXELVALUEOFTHEFUSEDIMAGECANDTHEMETHODSHOWNINEQ9ISTHEPROCESSTOCALCULATETHEPIXELVALUEFORFUSEDIMAGEOFTANDV25COMPARISONBETWEENQIANDSQIINTHISSECTION,ACOMPARISONANALYSISOFQUOTIENTIMAGEQIANDSELFQUOTIENTIMAGESQIHASBEENPRESENTEDACCORDINGTOTHECONCEPTPROPOSEDBYHAITAOWANG,STANZLIANDYANGSHENGWANG25SQIISDEFINEDASTHERATIOOFTHEINPUTIMAGEANDITSSMOOTHVERSIONSTHESELFQUOTIENTIMAGEQOFIMAGEICANBEEXPRESSEDASIIQIFI10WHEREISTHESMOOTHEDVERSIONOFIFISTHESMOOTHINGKERNELWECANCONSIDERTHESQIASONEKINDOFQIWHICHISDERIVEDFROMTHESAMEIMAGEIITSELFTHEDEFINITIONOFTHEQUOTIENTIMAGEPROVIDESANINVARIANTREPRESENTATIONOFFACEIMAGESUNDERDIFFERENTLIGHTINGCONDITIONS26PRINCIPALCOMPONENTANALYSISTHEPRINCIPALCOMPONENTANALYSISPCA41,42,43USESTHEENTIREIMAGETOGENERATEASETOFFEATURESANDDOESNOTREQUIRETHELOCATIONOFINDIVIDUALFEATUREPOINTSWITHINTHEIMAGEWEHAVEIMPLEMENTEDTHEPCATRANSFORMASAREDUCEDFEATUREEXTRACTORINOURFACERECOGNITIONSYSTEMHERE,EACHOFTHEQUOTIENTFUSEDFACEIMAGESAREPROJECTEDINTOTHEEIGENSPACECREATEDBYTHEEIGENVECTORSOFTHECOVARIANCEMATRIXOFALLTHETRAININGIMAGESREPRESENTEDASCOLUMNVECTORHERE,WEHAVETAKENTHENUMBEROFEIGENVECTORSINTHEEIGENSPACEAS40,BECAUSEEIGENVALUESFOROTHEREIGENVECTORSARENEGLIGIBLEINCOMPARISONTOTHELARGESTEIGENVALUES44454627ANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT“INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG6HISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS471225353EXPERIMENTSANDDISCUSSIONEXPERIMENTSAREPERFORMEDTOEVALUATEQUOTIENTIMAGEQIFORFACERECOGNITION,USINGIRISDATABASETHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYASTHEBOTHRECONSTRUCTEDVISUALANDTHERMALIMAGESHASBEENUSEDTOGENERATEQUOTIENTFUSEDIMAGES,SOFIRSTOFALLORIGINALIMAGESARECROPPEDMANUALLY31OTCBVSDATABASETHEEXPERIMENTSWEREPERFORMEDONTHEFACEDATABASEWHICHISOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSBENCHMARKDATABASECONTAININGASETOFTHERMALANDVISUALFACEIMAGESTHISISAPUBLICLYAVAILABLEBENCHMARKDATASETFORTESTINGANDEVALUATINGNOVELANDSTATEOFTHEARTCOMPUTERVISIONALGORITHMSTHEBENCHMARKCONTAINSVIDEOSANDIMAGESRECORDEDINANDBEYONDTHEVISIBLESPECTRUMITCONTAINSDIFFERENTSETSOFDATALIKEOSUTHERMALPEDESTRIANDATABASE,IRISTHERMAL/VISIBLEFACEDATABASE,OSUCOLORTHERMALDATABASE,TERRAVICFACIALIRDATABASE,TERRAVICWEAPONIRDATABASEANDCBSRNIRFACEDATASETAMONGALLOFTHESEDIFFERENTDATASETS,MAINLY,VISUALIMAGESFROMIRISTHERMAL/VISIBLEFACEDATASETHAVEBEENUSEDINTHISDATASET,THEREARE2000IMAGESOFVISUALAND2000THERMALIMAGESOF16DIFFERENTPERSONSINCASEOF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 推動(dòng)美麗城市建設(shè)的策略與實(shí)施路徑分析
- 普惠托育服務(wù)創(chuàng)新與發(fā)展路徑
- 低空經(jīng)濟(jì)產(chǎn)業(yè)園投資前景與發(fā)展計(jì)劃
- 中日文化差異與比較研究
- 單位茶葉合同標(biāo)準(zhǔn)文本
- 全球及中國(guó)心理健康治療行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及發(fā)展前景研究報(bào)告2025-2028版
- 全球及中國(guó)多層紅外玻璃行業(yè)市場(chǎng)發(fā)展分析及前景趨勢(shì)與投資發(fā)展研究報(bào)告2025-2028版
- 全球及中國(guó)動(dòng)物尸檢表行業(yè)市場(chǎng)發(fā)展分析及前景趨勢(shì)與投資發(fā)展研究報(bào)告2025-2028版
- 全球及中國(guó)體驗(yàn)式營(yíng)銷機(jī)構(gòu)行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及發(fā)展前景研究報(bào)告2025-2028版
- 全球及中國(guó)云成本管理和優(yōu)化行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及發(fā)展前景研究報(bào)告2025-2028版
- 2025鄂爾多斯準(zhǔn)格爾旗事業(yè)單位引進(jìn)40名高層次人才和急需緊缺專業(yè)人才筆試備考試題及答案解析
- 銀行領(lǐng)導(dǎo)力培養(yǎng)試題及答案
- 中醫(yī)養(yǎng)生館運(yùn)營(yíng)方案中醫(yī)養(yǎng)生館策劃書
- 醫(yī)療社工筆試題及答案
- 【MOOC】理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 傳統(tǒng)園林技藝智慧樹知到期末考試答案章節(jié)答案2024年華南農(nóng)業(yè)大學(xué)
- 小學(xué)數(shù)學(xué) 西南師大版 四年級(jí)下冊(cè) 小數(shù)的加法和減法部?jī)?yōu)課件
- 四川大學(xué)-劉龍飛-畢業(yè)答辯PPT模板
- 小學(xué)數(shù)學(xué)教學(xué)專題講座
- 無(wú)人機(jī)駕駛員培訓(xùn)基地項(xiàng)目建議書范文
- 鐵板神數(shù)教材張智華
評(píng)論
0/150
提交評(píng)論