




免費(fèi)預(yù)覽已結(jié)束,剩余37頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高初中數(shù)學(xué)的銜接講座-育才編(全套,新課標(biāo)人教A版)如何做好高、初中數(shù)學(xué)的銜接 第一講 如何學(xué)好高中數(shù)學(xué) 初中生經(jīng)過中考的奮力拼搏,剛跨入高中,都有十足的信心、旺盛的求知欲,都有把高中課程學(xué)好的愿望。但經(jīng)過一段時(shí)間,他們普遍感覺高中數(shù)學(xué)并非想象中那么簡單易學(xué),而是太枯燥、乏味、抽象、晦澀,有些章節(jié)如聽天書。在做習(xí)題、課外練習(xí)時(shí),又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知從何下手。相當(dāng)部分學(xué)生進(jìn)入數(shù)學(xué)學(xué)習(xí)的“困難期”,數(shù)學(xué)成績出現(xiàn)嚴(yán)重的滑坡現(xiàn)象。漸漸地他們認(rèn)為數(shù)學(xué)神秘莫測,從而產(chǎn)生畏懼感,動(dòng)搖了學(xué)好數(shù)學(xué)的信心,甚至失去了學(xué)習(xí)數(shù)學(xué)的興趣。造成這種現(xiàn)象的原因是多方面的,但最主要的根源還在于初、高中數(shù)學(xué)教學(xué)上的銜接問題。下面就對造成這種現(xiàn)象的一些原因加以分析、總結(jié)。希望同學(xué)們認(rèn)真吸取前人的經(jīng)驗(yàn)教訓(xùn),搞好自己的數(shù)學(xué)學(xué)習(xí)。一 高中數(shù)學(xué)與初中數(shù)學(xué)特點(diǎn)的變化1 數(shù)學(xué)語言在抽象程度上突變。不少學(xué)生反映,集合、映射等概念難以理解,覺得離生活很遠(yuǎn),似乎很“玄”。確實(shí),初、高中的數(shù)學(xué)語言有著顯著的區(qū)別。初中的數(shù)學(xué)主要是以形象、通俗的語言方式進(jìn)行表達(dá)。而高一數(shù)學(xué)一下子就觸及抽象的集合語言、邏輯運(yùn)算語言以及以后要學(xué)習(xí)到的函數(shù)語言、空間立體幾何等。2 思維方法向理性層次躍遷。高中數(shù)學(xué)思維方法與初中階段大不相同。初中階段,很多老師為學(xué)生將各種題建立了統(tǒng)一的思維模式,如解分式方程分幾步;因式分解先看什么,再看什么。即使是思維非常靈活的平面幾何問題,也對線段相等、角相等,分別確定了各自的思維套路。因此,初中學(xué)習(xí)中習(xí)慣于這種機(jī)械的、便于操作的定勢方式。高中數(shù)學(xué)在思維形式上產(chǎn)生了很大的變化,數(shù)學(xué)語言的抽象化對思維能力提出了高要求。當(dāng)然,能力的發(fā)展是漸進(jìn)的,不是一朝一夕的。這種能力要求的突變使很多高一新生感到不適應(yīng),故而導(dǎo)致成績下降。高一新生一定要能從經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡,最后還需初步形成辯證型思維。3 知識內(nèi)容的整體數(shù)量劇增。高中數(shù)學(xué)在知識內(nèi)容的“量”上急劇增加了。例如:高一代數(shù)第一章就有基本概念52個(gè),數(shù)學(xué)符號28個(gè);立體幾何第一章有基本概念37個(gè),基本公理、定理和推論21個(gè);兩者合在一起僅基本概念就達(dá)89個(gè)之多,并集中在高一第一學(xué)期學(xué)習(xí),形成了概念密集的學(xué)習(xí)階段。加之高中一年級第一學(xué)期只有七十多課時(shí),輔助練習(xí)、消化的課時(shí)相應(yīng)地減少了。使得數(shù)學(xué)課時(shí)吃緊,因而教學(xué)進(jìn)度一般較快,從而增加了教與學(xué)的難度。這樣,不可避免地造成學(xué)生不適應(yīng)高中數(shù)學(xué)學(xué)習(xí),而影響成績的提高。這就要求:第一,要做好課后的復(fù)習(xí)工作,記牢大量的知識。第二,要理解掌握好新舊知識的內(nèi)在聯(lián)系,使新知識順利地同化于原有知識結(jié)構(gòu)之中。第三,因知識教學(xué)多以零星積累的方式進(jìn)行的,當(dāng)知識信息量過大時(shí),其記憶效果不會很好,因此要學(xué)會對知識結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),實(shí)行“整體集裝”。如表格化,使知識結(jié)構(gòu)一目了然;類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題同構(gòu)于同一知識方法。第四,要多做總結(jié)、歸類,建立主體的知識結(jié)構(gòu)網(wǎng)絡(luò)。二 不良的學(xué)習(xí)狀態(tài)1 學(xué)習(xí)習(xí)慣因依賴心理而滯后。初中生在學(xué)習(xí)上的依賴心理是很明顯的。第一,為提高分?jǐn)?shù),初中數(shù)學(xué)教師將各種題型都一一羅列,學(xué)生依賴于教師為其提供套用的“模子”;第二,家長望子成龍心切,回家后輔導(dǎo)也是常事。升入高中后,教師的教學(xué)方法變了,套用的“模子”沒有了,家長輔導(dǎo)的能力也跟不上了。許多同學(xué)進(jìn)入高中后,還象初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)的主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”。2 思想松懈。有些同學(xué)把初中的那一套思想移植到高中來。他們認(rèn)為自已在初一、二時(shí)并沒有用功學(xué)習(xí),只是在初三臨考時(shí)才發(fā)奮了一、二個(gè)月就輕而易舉地考上了高中,有的還是重點(diǎn)中學(xué)里的重點(diǎn)班,因而認(rèn)為讀高中也不過如此。高一、高二根本就用不著那么用功,只要等到高三臨考時(shí)再發(fā)奮一、二個(gè)月,也一樣會考上一所理想的大學(xué)的。存有這種思想的同學(xué)是大錯(cuò)特錯(cuò)的。有多少同學(xué)就是因?yàn)楦咭?、二不努力學(xué)習(xí),臨近高考了,發(fā)現(xiàn)自己缺漏了很多知識再彌補(bǔ)后悔晚矣。3 學(xué)不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆;課后又不能及時(shí)鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。還有些同學(xué)晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。4 不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。5 進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)值的求法、實(shí)根分布與參變量的討論、,三角公式的變形與靈活運(yùn)用、空間概念的形成、排列組合應(yīng)用題及實(shí)際應(yīng)用問題等。有的內(nèi)容還是初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,就必然會跟不上高中學(xué)習(xí)的要求。三 科學(xué)地進(jìn)行學(xué)習(xí)高中學(xué)生僅僅想學(xué)是不夠的,還必須“會學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),才能提高學(xué)習(xí)成績。1 培養(yǎng)良好的學(xué)習(xí)習(xí)慣。反復(fù)使用的方法將變成人們的習(xí)慣。什么是良好的學(xué)習(xí)習(xí)慣?良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。(1)制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動(dòng)主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。(2)課前自學(xué)是上好新課、取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。自學(xué)不能走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。(3)上課是理解和掌握基礎(chǔ)知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)?!皩W(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。(4)及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會”。(5)獨(dú)立作業(yè)是通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程也是對意志毅力的考驗(yàn),通過運(yùn)用使對所學(xué)知識由“會”到“熟”。(6)解決疑難是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯(cuò)的作業(yè)再做一遍。對錯(cuò)誤的地方要反復(fù)思考。實(shí)在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯(cuò)的知識拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,使所學(xué)到的知識由“熟”到“活”。(7)系統(tǒng)小結(jié)是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。(8)課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。2 循序漸進(jìn),防止急躁。由于同學(xué)們年齡較小,閱歷有限,為數(shù)不少的同學(xué)容易急躁。有的同學(xué)貪多求快,囫圇吞棗;有的同學(xué)想靠幾天“沖刺”一蹴而就;有的取得一點(diǎn)成績便洋洋自得,遇到挫折又一蹶不振。同學(xué)們要知道,學(xué)習(xí)是一個(gè)長期地鞏固舊知、發(fā)現(xiàn)新知的積累過程,決非一朝一夕可以完成的。為什么高中要學(xué)三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。3 注意研究學(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法。數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)運(yùn)算能力、邏輯思維能力、空間想象能力以及運(yùn)用所學(xué)知識分析問題、解決問題的能力的重任。它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。對課本知識既要能鉆進(jìn)去,又要能跳出來,結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法。華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過程就是這個(gè)道理。方法因人而異,但學(xué)習(xí)的四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí))和一個(gè)步驟(歸納總結(jié))是少不了的。 第二講 初中數(shù)學(xué)與高中數(shù)學(xué)銜接緊密的知識點(diǎn) 1 絕對值:在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。正數(shù)的絕對值是他本身,負(fù)數(shù)的絕對值是他的相反數(shù),0的絕對值是0,即兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小兩個(gè)絕對值不等式:;或2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。方法:提公因式法,運(yùn)用公式法,分組分解法,十字相乘法。4 一元一次方程:在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。關(guān)于方程解的討論當(dāng)時(shí),方程有唯一解;當(dāng),時(shí),方程無解 當(dāng),時(shí),方程有無數(shù)解;此時(shí)任一實(shí)數(shù)都是方程的解。5 二元一次方程組:(1)兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。(2)適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。(3)二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。(4)解二元一次方程組的方法:代入消元法,加減消元法。6 不等式與不等式組(1)不等式:用符不等號(、)連接的式子叫不等式。不等式的兩邊都加上或減去同一個(gè)整式,不等號的方向不變。不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號方向不變。不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號方向相反。(2)不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解。一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式解集的過程叫做解不等式。(3)一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。(4)一元一次不等式組:關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。求不等式組解集的過程,叫做解不等式組。7 一元二次方程:方程有兩個(gè)實(shí)數(shù)根 方程有兩根同號 方程有兩根異號 韋達(dá)定理及應(yīng)用:, 8 函數(shù)(1)變量:因變量,自變量。 在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。(2)一次函數(shù):若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。當(dāng)=0時(shí),稱是的正比例函數(shù)。(3)一次函數(shù)的圖象及性質(zhì)把一個(gè)函數(shù)的自變量與對應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。正比例函數(shù)=的圖象是經(jīng)過原點(diǎn)的一條直線。在一次函數(shù)中,當(dāng)0, O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0, 0時(shí),則經(jīng)1、3、4象限;當(dāng)0, 0時(shí),則經(jīng)1、2、3象限。當(dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而減少。(4)二次函數(shù):一般式:(),對稱軸是頂點(diǎn)是;頂點(diǎn)式:(),對稱軸是頂點(diǎn)是;交點(diǎn)式:(),其中(),()是拋物線與x軸的交點(diǎn)(5)二次函數(shù)的性質(zhì) 函數(shù)的圖象關(guān)于直線對稱。時(shí),在對稱軸 ()左側(cè),值隨值的增大而減少;在對稱軸()右側(cè);的值隨值的增大而增大。當(dāng)時(shí),取得最小值時(shí),在對稱軸 ()左側(cè),值隨值的增大而增大;在對稱軸()右側(cè);的值隨值的增大而減少。當(dāng)時(shí),取得最大值9 圖形的對稱(1)軸對稱圖形:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形,這條直線叫做對稱軸。軸對稱圖形上關(guān)于對稱軸對稱的兩點(diǎn)確定的線段被對稱軸垂直平分。(2)中心對稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做他的對稱中心。中心對稱圖形上的每一對對應(yīng)點(diǎn)所連成的線段都被對稱中心平分。10 平面直角坐標(biāo)系(1)在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。水平的數(shù)軸叫做軸或橫軸,鉛直的數(shù)軸叫做軸或縱軸,軸與軸統(tǒng)稱坐標(biāo)軸,他們的公共原點(diǎn)稱為直角坐標(biāo)系的原點(diǎn)。(2)平面直角坐標(biāo)系內(nèi)的對稱點(diǎn):設(shè),是直角坐標(biāo)系內(nèi)的兩點(diǎn),若和關(guān)于軸對稱,則有。若和關(guān)于軸對稱,則有。若和關(guān)于原點(diǎn)對稱,則有。若和關(guān)于直線對稱,則有。若和關(guān)于直線對稱,則有或。11 統(tǒng)計(jì)與概率:(1)科學(xué)記數(shù)法:一個(gè)大于10的數(shù)可以表示成的形式,其中大于等于1小于10,是正整數(shù)。(2)扇形統(tǒng)計(jì)圖:用圓表示總體,圓中的各個(gè)扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。扇形統(tǒng)計(jì)圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360度的比。(3)各類統(tǒng)計(jì)圖的優(yōu)劣:條形統(tǒng)計(jì)圖:能清楚表示出每個(gè)項(xiàng)目的具體數(shù)目;折線統(tǒng)計(jì)圖:能清楚反映事物的變化情況;扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。(5)平均數(shù):對于個(gè)數(shù),我們把()叫做這個(gè)個(gè)數(shù)的算術(shù)平均數(shù),記為。(6)加權(quán)平均數(shù):一組數(shù)據(jù)里各個(gè)數(shù)據(jù)的重要程度未必相同,因而,在計(jì)算這組數(shù)據(jù)的平均數(shù)時(shí)往往給每個(gè)數(shù)據(jù)加一個(gè)權(quán),這就是加權(quán)平均數(shù)。(7)中位數(shù)與眾數(shù):N個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個(gè)數(shù)據(jù)叫做這個(gè)組數(shù)據(jù)的眾數(shù)。優(yōu)劣比較:平均數(shù):所有數(shù)據(jù)參加運(yùn)算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中常用,但容易受極端值影響;中位數(shù):計(jì)算簡單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個(gè)數(shù)據(jù)如果重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別的意義。(8)調(diào)查:為了一定的目的而對考察對象進(jìn)行的全面調(diào)查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個(gè)考察對象稱為個(gè)體。從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本。抽樣調(diào)查只考察總體中的一小部分個(gè)體,因此他的優(yōu)點(diǎn)是調(diào)查范圍小,節(jié)省時(shí)間,人力,物力和財(cái)力,但其調(diào)查結(jié)果往往不如普查得到的結(jié)果準(zhǔn)確。為了獲得較為準(zhǔn)確的調(diào)查結(jié)果,抽樣時(shí)要主要樣本的代表性和廣泛性。(9)頻數(shù)與頻率:每個(gè)對象出現(xiàn)的次數(shù)為頻數(shù),而每個(gè)對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。當(dāng)收集的數(shù)據(jù)連續(xù)取值時(shí),我們通常先將數(shù)據(jù)適當(dāng)分組,然后再繪制頻數(shù)分布直方圖。(10)數(shù)據(jù)的波動(dòng):極差是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差。方差是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方和的平均數(shù)。標(biāo)準(zhǔn)差就是方差的算術(shù)平方根。一般來說,一組數(shù)據(jù)的極差,方差,或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。(11)事件的可能性:有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。一般來說,不確定事件發(fā)生的可能性是有大小的。(12)概率:人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。必然事件發(fā)生的概率為1,記作(必然事件);不可能事件發(fā)生的概率為,記作(不可能事件);如果A為不確定事件,那么 第三講 銜接知識點(diǎn)的專題強(qiáng)化訓(xùn)練 專題一 數(shù)與式的運(yùn)算【要點(diǎn)回顧】1絕對值1絕對值的代數(shù)意義: 即 2絕對值的幾何意義: 的距離 3兩個(gè)數(shù)的差的絕對值的幾何意義:表示 的距離4兩個(gè)絕對值不等式:;2乘法公式我們在初中已經(jīng)學(xué)習(xí)過了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我們還可以通過證明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)說明:上述公式均稱為“乘法公式”3根式1式子叫做二次根式,其性質(zhì)如下:(1) ;(2) ;(3) ; (4) 2平方根與算術(shù)平方根的概念: 叫做的平方根,記作,其中叫做的算術(shù)平方根3立方根的概念: 叫做的立方根,記為4分式1分式的意義 形如的式子,若B中含有字母,且,則稱為分式當(dāng)M0時(shí),分式具有下列性質(zhì): (1) ; (2) 2繁分式 當(dāng)分式的分子、分母中至少有一個(gè)是分式時(shí),就叫做繁分式,如,說明:繁分式的化簡常用以下兩種方法:(1) 利用除法法則;(2) 利用分式的基本性質(zhì)3分母(子)有理化把分母(子)中的根號化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根號的過程;而分子有理化則是分母和分子都乘以分母的有理化因式,化去分子中的根號的過程【例題選講】例1 解下列不等式:(1) (2)4例2 計(jì)算: (1) (2)(3) (4)例3 已知,求的值例4 已知,求的值例5 計(jì)算(沒有特殊說明,本節(jié)中出現(xiàn)的字母均為正數(shù)):(1) (2) (3) (4) 例6 設(shè),求的值例7 化簡:(1) (2)(1)解法一:原式= 解法二:原式=(2)解:原式=說明:(1) 分式的乘除運(yùn)算一般化為乘法進(jìn)行,當(dāng)分子、分母為多項(xiàng)式時(shí),應(yīng)先因式分解再進(jìn)行約分化簡;(2) 分式的計(jì)算結(jié)果應(yīng)是最簡分式或整式 【鞏固練習(xí)】1 解不等式 2 設(shè),求代數(shù)式的值3 當(dāng),求的值4 設(shè),求的值5 計(jì)算6化簡或計(jì)算:(1) (2) (3) (4) 專題二 因式分解【要點(diǎn)回顧】 因式分解是代數(shù)式的一種重要的恒等變形,它與整式乘法是相反方向的變形在分式運(yùn)算、解方程及各種恒等變形中起著重要的作用是一種重要的基本技能因式分解的方法較多,除了初中課本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,還有公式法(立方和、立方差公式)、十字相乘法和分組分解法等等1公式法常用的乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 45(立方和公式)6 (立方差公式)由于因式分解與整式乘法正好是互為逆變形,所以把整式乘法公式反過來寫,運(yùn)用上述公式可以進(jìn)行因式分解2分組分解法 從前面可以看出,能夠直接運(yùn)用公式法分解的多項(xiàng)式,主要是二項(xiàng)式和三項(xiàng)式而對于四項(xiàng)以上的多項(xiàng)式,如既沒有公式可用,也沒有公因式可以提取因此,可以先將多項(xiàng)式分組處理這種利用分組來因式分解的方法叫做分組分解法分組分解法的關(guān)鍵在于如何分組常見題型:(1)分組后能提取公因式 (2)分組后能直接運(yùn)用公式3十字相乘法(1)型的因式分解 這類式子在許多問題中經(jīng)常出現(xiàn),其特點(diǎn)是:二次項(xiàng)系數(shù)是1;常數(shù)項(xiàng)是兩個(gè)數(shù)之積; 一次項(xiàng)系數(shù)是常數(shù)項(xiàng)的兩個(gè)因數(shù)之和,運(yùn)用這個(gè)公式,可以把某些二次項(xiàng)系數(shù)為1的二次三項(xiàng)式分解因式(2)一般二次三項(xiàng)式型的因式分解由我們發(fā)現(xiàn),二次項(xiàng)系數(shù)分解成,常數(shù)項(xiàng)分解成,把寫成,這里按斜線交叉相乘,再相加,就得到,如果它正好等于的一次項(xiàng)系數(shù),那么就可以分解成,其中位于上一行,位于下一行這種借助畫十字交叉線分解系數(shù),從而將二次三項(xiàng)式分解因式的方法,叫做十字相乘法必須注意,分解因數(shù)及十字相乘都有多種可能情況,所以往往要經(jīng)過多次嘗試,才能確定一個(gè)二次三項(xiàng)式能否用十字相乘法分解4其它因式分解的方法其他常用的因式分解的方法:(1)配方法 (2)拆、添項(xiàng)法【例題選講】例1 (公式法)分解因式:(1) ;(2) 例2 (分組分解法)分解因式:(1) (2)例3 (十字相乘法)把下列各式因式分解:(1) (2) (3) (4) 解:(1)(2) (3)分析:把看成的二次三項(xiàng)式,這時(shí)常數(shù)項(xiàng)是,一次項(xiàng)系數(shù)是,把分解成與的積,而,正好是一次項(xiàng)系數(shù) 解: (4) 由換元思想,只要把整體看作一個(gè)字母,可不必寫出,只當(dāng)作分解二次三項(xiàng)式解: 例4 (十字相乘法)把下列各式因式分解:(1) ;(2) 解:(1) (2) 說明:用十字相乘法分解二次三項(xiàng)式很重要當(dāng)二次項(xiàng)系數(shù)不是1時(shí)較困難,具體分解時(shí),為提高速度,可先對有關(guān)常數(shù)分解,交叉相乘后,若原常數(shù)為負(fù)數(shù),用減法”湊”,看是否符合一次項(xiàng)系數(shù),否則用加法”湊”,先”湊”絕對值,然后調(diào)整,添加正、負(fù)號例5 (拆項(xiàng)法)分解因式【鞏固練習(xí)】1把下列各式分解因式:(1) (2) (3) (4) (5) 2已知,求代數(shù)式的值3現(xiàn)給出三個(gè)多項(xiàng)式,請你選擇其中兩個(gè)進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.4已知,求證: 專題三 一元二次方程根與系數(shù)的關(guān)系【要點(diǎn)回顧】1一元二次方程的根的判斷式一元二次方程,用配方法將其變形為: 由于可以用的取值情況來判定一元二次方程的根的情況因此,把叫做一元二次方程的根的判別式,表示為:對于一元二次方程ax2bxc0(a0),有1當(dāng) 0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根: ;2當(dāng) 0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根: ;3當(dāng) 0時(shí),方程沒有實(shí)數(shù)根2一元二次方程的根與系數(shù)的關(guān)系定理:如果一元二次方程的兩個(gè)根為,那么: 說明:一元二次方程根與系數(shù)的關(guān)系由十六世紀(jì)的法國數(shù)學(xué)家韋達(dá)發(fā)現(xiàn),所以通常把此定理稱為”韋達(dá)定理”上述定理成立的前提是 特別地,對于二次項(xiàng)系數(shù)為1的一元二次方程x2pxq0,若x1,x2是其兩根,由韋達(dá)定理可知 x1x2p,x1x2q,即 p(x1x2),qx1x2,所以,方程x2pxq0可化為 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的兩根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有 以兩個(gè)數(shù)x1,x2為根的一元二次方程(二次項(xiàng)系數(shù)為1)是 x2(x1x2)xx1x20【例題選講】例1 已知關(guān)于的一元二次方程,根據(jù)下列條件,分別求出的范圍:(1)方程有兩個(gè)不相等的實(shí)數(shù)根;(2)方程有兩個(gè)相等的實(shí)數(shù)根(3)方程有實(shí)數(shù)根;(4)方程無實(shí)數(shù)根例2 已知實(shí)數(shù)、滿足,試求、的值例3 若是方程的兩個(gè)根,試求下列各式的值:(1) ;(2) ;(3) ;(4) 例4 已知是一元二次方程的兩個(gè)實(shí)數(shù)根(1) 是否存在實(shí)數(shù),使成立?若存在,求出的值;若不存在,請說明理由(2) 求使的值為整數(shù)的實(shí)數(shù)的整數(shù)值解:(1) 假設(shè)存在實(shí)數(shù),使成立 一元二次方程的兩個(gè)實(shí)數(shù)根, ,又是一元二次方程的兩個(gè)實(shí)數(shù)根, ,但不存在實(shí)數(shù),使成立(2) 要使其值是整數(shù),只需能被4整除,故,注意到,要使的值為整數(shù)的實(shí)數(shù)的整數(shù)值為【鞏固練習(xí)】1若是方程的兩個(gè)根,則的值為()ABCD2若是一元二次方程的根,則判別式和完全平方式的關(guān)系是()ABCD大小關(guān)系不能確定3設(shè)是方程的兩實(shí)根,是關(guān)于的方程的兩實(shí)根,則= _ _ ,= _ _ 4已知實(shí)數(shù)滿足,則= _ _ ,= _ ,= _ 5已知關(guān)于的方程的兩個(gè)實(shí)數(shù)根的平方和等于11,求證:關(guān)于的方程有實(shí)數(shù)根6若是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,且都大于1(1) 求實(shí)數(shù)的取值范圍;(2) 若,求的值 專題四 平面直角坐標(biāo)系、一次函數(shù)、反比例函數(shù)【要點(diǎn)回顧】1平面直角坐標(biāo)系1 組成平面直角坐標(biāo)系。 叫做軸或橫軸, 叫做軸或縱軸,軸與軸統(tǒng)稱坐標(biāo)軸,他們的公共原點(diǎn)稱為直角坐標(biāo)系的原點(diǎn)。2 平面直角坐標(biāo)系內(nèi)的對稱點(diǎn):對稱點(diǎn)或?qū)ΨQ直線方程對稱點(diǎn)的坐標(biāo)軸 軸 原點(diǎn) 點(diǎn) 直線 直線 直線 直線 2函數(shù)圖象 1一次函數(shù): 稱是的一次函數(shù),記為:(k、b是常數(shù),k0)特別的,當(dāng)=0時(shí),稱是的正比例函數(shù)。2 正比例函數(shù)的圖象與性質(zhì):函數(shù)y=kx(k是常數(shù),k0)的圖象是 的一條直線,當(dāng) 時(shí),圖象過原點(diǎn)及第一、第三象限,y隨x的增大而 ;當(dāng) 時(shí),圖象過原點(diǎn)及第二、第四象限,y隨x的增大而 3 一次函數(shù)的圖象與性質(zhì):函數(shù)(k、b是常數(shù),k0)的圖象是過點(diǎn)(0,b)且與直線y=kx平行的一條直線.設(shè)(k0),則當(dāng) 時(shí),y隨x的增大而 ;當(dāng) 時(shí), y隨x的增大而 4反比例函數(shù)的圖象與性質(zhì):函數(shù)(k0)是雙曲線,當(dāng) 時(shí),圖象在第一、第三象限,在每個(gè)象限中,y隨x的增大而 ;當(dāng) 時(shí),圖象在第二、第四象限.,在每個(gè)象限中,y隨x的增大而 雙曲線是軸對稱圖形,對稱軸是直線與;又是中心對稱圖形,對稱中心是原點(diǎn)【例題選講】例1 已知、,根據(jù)下列條件,求出、點(diǎn)坐標(biāo)(1) 、關(guān)于x軸對稱;(2) 、關(guān)于y軸對稱;(3) 、關(guān)于原點(diǎn)對稱例2已知一次函數(shù)ykx2的圖象過第一、二、三象限且與x、y軸分別交于、兩點(diǎn),O為原點(diǎn),若AOB的面積為2,求此一次函數(shù)的表達(dá)式。 例3如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn)(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)根據(jù)圖象回答:當(dāng)取何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值解:(1)在的圖象上, 又在的圖象上,即 ,解得:, 反比例函數(shù)的解析式為,一次函數(shù)的解析式為, (2)從圖象上可知,當(dāng)或時(shí),反比例函數(shù)圖象在一次函數(shù)圖象的上方,所以反比例函數(shù)的值大于一次函數(shù)的值?!眷柟叹毩?xí)】1函數(shù)與在同一坐標(biāo)系內(nèi)的圖象可以是( ) 2如圖,平行四邊形ABCD中,A在坐標(biāo)原點(diǎn),D在第一象限角平分線上,又知,求點(diǎn)的坐標(biāo) 3如圖,已知直線與雙曲線交于兩點(diǎn),且點(diǎn)的橫坐標(biāo)為(1)求的值;(2)過原點(diǎn)的另一條直線交雙曲線于兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn)為頂點(diǎn)組成的四邊形面積為,求點(diǎn)的坐標(biāo) 專題五 二次函數(shù)【要點(diǎn)回顧】1 二次函數(shù)yax2bxc的圖像和性質(zhì)問題1 函數(shù)yax2與yx2的圖象之間存在怎樣的關(guān)系?問題2 函數(shù)ya(xh)2k與yax2的圖象之間存在怎樣的關(guān)系?由上面的結(jié)論,我們可以得到研究二次函數(shù)yax2bxc(a0)的圖象的方法:由于yax2bxca(x2)ca(x2)c, 所以,yax2bxc(a0)的圖象可以看作是將函數(shù)yax2的圖象作左右平移、上下平移得到的,二次函數(shù)yax2bxc(a0)具有下列性質(zhì):1當(dāng)a0時(shí),函數(shù)yax2bxc圖象開口方向 ;頂點(diǎn)坐標(biāo)為 ,對稱軸為直線 ;當(dāng) 時(shí),y隨著x的增大而 ;當(dāng) 時(shí),y隨著x的增大而 ;當(dāng) 時(shí),函數(shù)取最小值 2當(dāng)a0時(shí),函數(shù)yax2bxc圖象開口方向 ;頂點(diǎn)坐標(biāo)為 ,對稱軸為直線 ;當(dāng) 時(shí),y隨著x的增大而 ;當(dāng) 時(shí),y隨著x的增大而 ;當(dāng) 時(shí),函數(shù)取最大值 上述二次函數(shù)的性質(zhì)可以分別通過上圖直觀地表示出來因此,在今后解決二次函數(shù)問題時(shí),可以借助于函數(shù)圖像、利用數(shù)形結(jié)合的思想方法來解決問題2二次函數(shù)的三種表示方式1二次函數(shù)的三種表示方式:(1)一般式: ;(2)頂點(diǎn)式: ;(3)交點(diǎn)式: 說明:確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡單為原則二次函數(shù)的關(guān)系式可設(shè)如下三種形式:給出三點(diǎn)坐標(biāo)可利用一般式來求;給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用頂點(diǎn)式來求給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn).時(shí)可利用交點(diǎn)式來求3分段函數(shù)一般地,如果自變量在不同取值范圍內(nèi)時(shí),函數(shù)由不同的解析式給出,這種函數(shù),叫作分段函數(shù)【例題選講】例1 求二次函數(shù)y3x26x1圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)、最大值(或最小值),并指出當(dāng)x取何值時(shí),y隨x的增大而增大(或減小)?并畫出該函數(shù)的圖象例2 某種產(chǎn)品的成本是120元/件,試銷階段每件產(chǎn)品的售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間關(guān)系如下表所示:x /元130150165y/件705035若日銷售量y是銷售價(jià)x的一次函數(shù),那么,要使每天所獲得最大的利潤,每件產(chǎn)品的銷售價(jià)應(yīng)定為多少元?此時(shí)每天的銷售利潤是多少? 例3 已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對應(yīng)的自變量x的值 例4 根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式(1)已知某二次函數(shù)的最大值為2,圖像的頂點(diǎn)在直線yx1上,并且圖象經(jīng)過點(diǎn)(3,1);(2)已知二次函數(shù)的圖象過點(diǎn)(3,0),(1,0),且頂點(diǎn)到x軸的距離等于2;(3)已知二次函數(shù)的圖象過點(diǎn)(1,22),(0,8),(2,8) 例5 在國內(nèi)投遞外埠平信,每封信不超過20g付郵資80分,超過20g不超過40g付郵資160分,超過40g不超過60g付郵資240分,依此類推,每封xg(0x100)的信應(yīng)付多少郵資(單位:分)?寫出函數(shù)表達(dá)式,作出函數(shù)圖象分析:由于當(dāng)自變量x在各個(gè)不同的范圍內(nèi)時(shí),應(yīng)付郵資的數(shù)量是不同的所以,可以用分段函數(shù)給出其對應(yīng)的函數(shù)解析式在解題時(shí),需要注意的是,當(dāng)x在各個(gè)小范圍內(nèi)(如20x40)變化時(shí),它所對應(yīng)的函數(shù)值(郵資)并不變化(都是160分)解:設(shè)每封信的郵資為y(單位:分),則y是x的函數(shù)這個(gè)函數(shù)的解析式為 由上述的函數(shù)解析式,可以得到其圖象如圖所示【鞏固練習(xí)】1選擇題:(1)把函數(shù)y(x1)24的圖象的頂點(diǎn)坐標(biāo)是 ( ) (A)(1,4) (B)(1,4) (C)(1,4) (D)(1,4)(2)函數(shù)yx24x6的最值情況是 ( ) (A)有最大值6 (B)有最小值6 (C)有最大值10 (D)有最大值2(3)函數(shù)y2x24x5中,當(dāng)3x2時(shí),則y值的取值范圍是 ( ) (A)3y1 (B)7y1 (C)7y11 (D)7y11 2填空:(1)已知某二次函數(shù)的圖象與x軸交于A(2,0),B(1,0),且過點(diǎn)C(2,4),則該二次函數(shù)的表達(dá)式為 (2)已知某二次函數(shù)的圖象過點(diǎn)(1,0),(0,3),(1,4),則該函數(shù)的表達(dá)式為 3根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式(1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,),B(1,0),C(,2);(2)已知拋物線的頂點(diǎn)為(1,),且與y軸交于點(diǎn)(0,1);(3)已知拋物線與x軸交于點(diǎn)M(,0),(5,0),且與y軸交于點(diǎn)(0,);(4)已知拋物線的頂點(diǎn)為(3,),且與x軸兩交點(diǎn)間的距離為44如圖,某農(nóng)民要用12m的竹籬笆在墻邊圍出一塊一面為墻、另三面為籬笆的矩形地供他圈養(yǎng)小雞已知墻的長度為6m,問怎樣圍才能使得該矩形面積最大?5如圖所示,在邊長為2的正方形ABCD的邊上有一個(gè)動(dòng)點(diǎn)P,從點(diǎn)A出發(fā)沿折線ABCD移動(dòng)一周后,回到A點(diǎn)設(shè)點(diǎn)A移動(dòng)的路程為x,PAC的面積為y(1)求函數(shù)y的解析式;(2)畫出函數(shù)y的圖像; (3)求函數(shù)y的取值范圍 專題六 二次函數(shù)的最值問題【要點(diǎn)回顧】1二次函數(shù)的最值二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無最小值2二次函數(shù)最大值或最小值的求法 第一步確定a的符號,a0有最小值,a0有最大值; 第二步配方求頂點(diǎn),頂點(diǎn)的縱坐標(biāo)即為對應(yīng)的最大值或最小值3求二次函數(shù)在某一范圍內(nèi)的最值如:在(其中)的最值第一步:先通過配方,求出函數(shù)圖象的對稱軸:;第二步:討論:1若時(shí)求最小值或時(shí)求最大值,需分三種情況討論: 對稱軸小于即,即對稱軸在的左側(cè); 對稱軸,即對稱軸在的內(nèi)部; 對稱軸大于即,即對稱軸在的右側(cè)。2 若時(shí)求最大值或時(shí)求最小值,需分兩種情況討論:對稱軸,即對稱軸在的中點(diǎn)的左側(cè);對稱軸,即對稱軸在的中點(diǎn)的右側(cè);說明:求二次函數(shù)在某一范圍內(nèi)的最值,要注意對稱軸與自變量的取值范圍相應(yīng)位置,具體情況,參考例4?!纠}選講】例1求下列函數(shù)的最大值或最小值 (1); (2)例2當(dāng)時(shí),求函數(shù)的最大值和最小值例3當(dāng)時(shí),求函數(shù)的取值范圍例4當(dāng)時(shí),求函數(shù)的最小值(其中為常數(shù))分析:由于所給的范圍隨著的變化而變化,所以需要比較對稱軸與其范圍的相對位置解:函數(shù)的對稱軸為畫出其草圖(1) 當(dāng)對稱軸在所給范圍左側(cè)即時(shí):當(dāng)時(shí),;(2) 當(dāng)對稱軸在所給范圍之間即時(shí):當(dāng)時(shí),;(3) 當(dāng)對稱軸在所給范圍右側(cè)即時(shí):當(dāng)時(shí), 綜上所述:例5某商場以每件30元的價(jià)格購進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量(件)與每件的銷售價(jià)(元)滿足一次函數(shù)(1) 寫出商場賣這種商品每天的銷售利潤與每件銷售價(jià)之間的函數(shù)關(guān)系式;(2) 若商場要想每天獲得最大銷售利潤,每件商品的售價(jià)定為多少最合適?最大銷售利潤為多少?【鞏固練習(xí)】1拋物線,當(dāng)= _ 時(shí),圖象的頂點(diǎn)在軸上;當(dāng)= _ 時(shí),圖象的頂點(diǎn)在軸上;當(dāng)= _ 時(shí),圖象過原點(diǎn)2用一長度為米的鐵絲圍成一個(gè)長方形或正方形,則其所圍成的最大面積為 _ 3設(shè),當(dāng)時(shí),函數(shù)的最小值是,最大值是0,求的值4已知函數(shù)在上的最大值為4,求的值5求關(guān)于的二次函數(shù)在上的最大值(為常數(shù)) 專題七 不 等 式【要點(diǎn)回顧】1一元二次不等式及其解法1定義:形如 為關(guān)于的一元二次不等式2一元二次不等式與二次函數(shù)及一元二次方程的關(guān)系(簡稱:三個(gè)二次)()一般地,一元二次不等式可以結(jié)合相應(yīng)的二次函數(shù)、一元二次方程求解,步驟如下:(1) 將二次項(xiàng)系數(shù)先化為正數(shù);(2) 觀測相應(yīng)的二次函數(shù)圖象如果圖象與軸有兩個(gè)交點(diǎn),此時(shí)對應(yīng)的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根(也可由根的判別式來判斷) 則 如果圖象與軸只有一個(gè)交點(diǎn),此時(shí)對應(yīng)的一元二次方程有兩個(gè)相等的實(shí)數(shù)根(也可由根的判別式來判斷) 則: 如果圖象與軸沒有交點(diǎn),此時(shí)對應(yīng)的一元二次方程沒有實(shí)數(shù)根 (也可由根的判別式來判斷) 則: ()解一元二次不等式的步驟是:(1) 化二次項(xiàng)系數(shù)為正;(2) 若二次三項(xiàng)式能分解成兩個(gè)一次因式的積,則求出兩根那么“”型的解為(俗稱兩根之外);“”型的解為(俗稱兩根之間);(3) 否則,對二次三項(xiàng)式進(jìn)行配方,變成,結(jié)合完全平方式為非負(fù)數(shù)的性質(zhì)求解2簡單分式不等式的解法 解簡單的分式不等式的方法:對簡單分式不等式進(jìn)行等價(jià)轉(zhuǎn)化,轉(zhuǎn)化為整式不等式,應(yīng)當(dāng)注意分母不為零.3含有字母系數(shù)的一元一次不等式一元一次不等式最終可以化為的形式1當(dāng)時(shí),不等式的解為:;2當(dāng)時(shí),不等式的解為:;3當(dāng)時(shí),不等式化為:; 若,則不等式的解是全體實(shí)數(shù); 若,則不等式無
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉儲設(shè)備維護(hù)與管理員聘用與服務(wù)協(xié)議
- 高端車庫抵押貸款合同范本
- 管道損壞協(xié)議書范本
- 采棉企業(yè)員工勞動(dòng)合同范本
- 車貸保證金及違約責(zé)任規(guī)范合同
- 環(huán)保工程場地調(diào)查與合同
- 磁通量索力實(shí)時(shí)監(jiān)測技術(shù)研究與應(yīng)用
- 泥石流區(qū)橋梁清淤導(dǎo)流工程方案
- 非煤礦山安全操作規(guī)程
- 風(fēng)冷機(jī)房空調(diào)的安裝與驗(yàn)收標(biāo)準(zhǔn)
- 河南省許昌市2023-2024學(xué)年三年級下學(xué)期期末質(zhì)量檢測語文試卷
- 2024年全國“紅旗杯”班組長大賽(復(fù)賽)備考試題庫(簡答、案例分析題)
- 全國住房城鄉(xiāng)建設(shè)行業(yè)職業(yè)技能大賽各賽項(xiàng)技術(shù)文件 C1-建筑信息模型技術(shù)員LS技術(shù)文件
- 北京大學(xué)2024年強(qiáng)基計(jì)劃筆試數(shù)學(xué)試題(解析)
- 2023-2024學(xué)年四川省南充市儀隴縣五年級數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析
- 畜禽屠宰企業(yè)獸醫(yī)衛(wèi)生檢驗(yàn)人員考試試題
- 醫(yī)療廢物污水培訓(xùn)課件
- 設(shè)備維保的預(yù)防性維修與預(yù)防性管理
- 2022-2023學(xué)年湖北省黃岡市武穴市七年級(下)期末歷史試卷(含解析)
- 2024年江蘇瑞海投資控股集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 山東省濟(jì)南市南山區(qū)2022-2023學(xué)年六年級下學(xué)期期末考試語文試題
評論
0/150
提交評論