畢業(yè)設(shè)指導(dǎo)書、實(shí)習(xí)報(bào)告和文獻(xiàn)翻譯.doc_第1頁(yè)
畢業(yè)設(shè)指導(dǎo)書、實(shí)習(xí)報(bào)告和文獻(xiàn)翻譯.doc_第2頁(yè)
畢業(yè)設(shè)指導(dǎo)書、實(shí)習(xí)報(bào)告和文獻(xiàn)翻譯.doc_第3頁(yè)
畢業(yè)設(shè)指導(dǎo)書、實(shí)習(xí)報(bào)告和文獻(xiàn)翻譯.doc_第4頁(yè)
畢業(yè)設(shè)指導(dǎo)書、實(shí)習(xí)報(bào)告和文獻(xiàn)翻譯.doc_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

煙臺(tái)大學(xué)土木工程學(xué)院土木工程專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)書題 目: 萊蕪市多層住宅樓建筑結(jié)構(gòu)設(shè)計(jì)設(shè)計(jì)期限: 自2011年3月1日 至2011年6月5日班 級(jí):土071-2學(xué)生姓名:陳興錄學(xué) 號(hào):200728501202指導(dǎo)教師(簽字):教研室主任(簽字):第1部分 設(shè)計(jì)題目及要求1. 項(xiàng)目概況1) 項(xiàng)目名稱:萊蕪市多層住宅樓建筑結(jié)構(gòu)設(shè)計(jì)2) 建設(shè)地點(diǎn):萊蕪市3)建筑規(guī)模和要求:(1)建筑規(guī)模建筑面積:住宅面積3600平方米,地下室倉(cāng)庫(kù)574平方米;1) 建筑等級(jí):建筑設(shè)計(jì)使用年限為50年,耐火等級(jí)為級(jí);2) 層數(shù)、層高:地下室1層,主體結(jié)構(gòu)6層,閣樓1層;3) 結(jié)構(gòu)形式:鋼筋混凝土框架結(jié)構(gòu);4) 建筑水、電均由城市集中供應(yīng)。2. 地質(zhì)條件和地理概況(1)工程地質(zhì)及場(chǎng)地概況場(chǎng)內(nèi)地勢(shì)平坦,無(wú)障礙物影響施工,附近空地可供臨時(shí)使用。表2 工程地質(zhì)概況土層厚度(m)土層描述地基承載力特征值(kN/m2)03.2回填土00.57.6粉質(zhì)粘土1800.59.3強(qiáng)風(fēng)化粘土質(zhì)粉砂巖300(3) 抗震設(shè)防烈度和地震分組:7度,第二組(4)室外環(huán)境類別:二類。3)技術(shù)經(jīng)濟(jì)條件(1)交通運(yùn)輸條件:公路由場(chǎng)地附近通過(guò),運(yùn)輸工具主要是汽車和平板車。(2)建筑企業(yè)概況: 該區(qū)有混凝土預(yù)制構(gòu)件廠相距11 km;木材加工廠距工地8km; 技術(shù)裝配情況:施工單位設(shè)備基本齊全,不具備的施工機(jī)械可向租賃公司租賃,可滿足施工要求; 現(xiàn)場(chǎng)水、電、路情況:附近有上水管網(wǎng)及供電設(shè)施可以利用,電源由附近電桿接線,場(chǎng)區(qū)內(nèi)道路可由城市干路修到工地; 定額選用:本工程定額按山東省建筑工程綜合預(yù)算定額及(國(guó)家)建筑安裝工程統(tǒng)一定額;4)材料供應(yīng)情況:鋼材、水泥、木材由國(guó)家統(tǒng)一調(diào)撥供應(yīng)。一般地方材料:如:磚、砂、石,石灰、玻璃等可按計(jì)劃采購(gòu)到。第2部分 設(shè)計(jì)內(nèi)容和進(jìn)度安排1、建筑設(shè)計(jì)內(nèi)容及其要求(1)建筑設(shè)計(jì)說(shuō)明書1)簡(jiǎn)述工程概況、使用要求和結(jié)構(gòu)選型原則;2)總平面布局、平面功能分區(qū)、水平防火分區(qū)、豎向防火分區(qū);3)采光、防火及安全疏散設(shè)計(jì);4)特殊的構(gòu)造設(shè)計(jì);5)立面設(shè)計(jì)特點(diǎn),內(nèi)外裝修材料的選擇;6)其他需要加以說(shuō)明的問(wèn)題。(2)建筑圖內(nèi)容及比例1)平面圖:底層、標(biāo)準(zhǔn)層、頂層平面圖,比例1:1002)立面圖:主立面、側(cè)立面圖、北立面,比例1:1003)剖面圖:1個(gè)剖面圖,比例1:1004)詳圖和樓梯大樣:2-3個(gè),比例1:505)建筑設(shè)計(jì)總說(shuō)明、門窗表、構(gòu)造做法表等。6)建筑圖紙目錄2、結(jié)構(gòu)設(shè)計(jì)內(nèi)容及要求(1) 結(jié)構(gòu)設(shè)計(jì)說(shuō)明書1)簡(jiǎn)述結(jié)構(gòu)方案(結(jié)構(gòu)選型、結(jié)構(gòu)布置)及確定依據(jù)和理由;2)基礎(chǔ)方案及確定依據(jù)和理由;3)柱網(wǎng)布置及構(gòu)件尺寸初估;4)樓梯方案選擇;5)建筑材料的選??;6)其他需要說(shuō)明的問(wèn)題(2) 結(jié)構(gòu)計(jì)算書1)手算部分框架計(jì)算簡(jiǎn)圖選?。喝芜x一榀框架進(jìn)行計(jì)算;荷載計(jì)算:根據(jù)荷載規(guī)范進(jìn)行計(jì)算;框架內(nèi)力計(jì)算(恒載、活載、風(fēng)載、地震作用下的內(nèi)力計(jì)算);側(cè)移計(jì)算;內(nèi)力組合;梁、板、柱截面配筋計(jì)算;基礎(chǔ)設(shè)計(jì)計(jì)算;樓梯計(jì)算:選做;2)電算部分完成結(jié)構(gòu)的平面設(shè)計(jì)(PMCAD)完成一個(gè)計(jì)算內(nèi)力和配筋計(jì)算(satew)完成框架柱下獨(dú)立基礎(chǔ)計(jì)算及配筋(JCCAD)完成樓板的配筋計(jì)算(PMCAD)完成一部樓梯的計(jì)算及配筋(LTCAD)(3)結(jié)構(gòu)施工圖1)各層結(jié)構(gòu)平面布置圖及板配筋圖2)基礎(chǔ)布置及詳圖:3)梁柱平法配筋圖: 4)一部樓梯施工圖。3、畢業(yè)設(shè)計(jì)進(jìn)度安排(1)建筑設(shè)計(jì):三周,13周;(2)結(jié)構(gòu)設(shè)計(jì):四周,47周;(3)Pkpm出圖:三周,47周;(4)設(shè)計(jì)說(shuō)明與計(jì)算書整理:1314周;(5)畢業(yè)答辯:15周。4、提交成果及其要求(1)建筑設(shè)計(jì)說(shuō)明書:12萬(wàn)字;(2)建筑施工圖:1#圖5-10張;(3)結(jié)構(gòu)設(shè)計(jì)計(jì)算書和設(shè)計(jì)說(shuō)明書:5-10萬(wàn)字;(4)結(jié)構(gòu)施工圖:1#圖5-10張;第3部分 參考資料及文獻(xiàn)1、 建筑設(shè)計(jì)部分1 房屋建筑學(xué)教材;2建筑設(shè)計(jì)資料集 中國(guó)建筑工業(yè)出版社3 建筑設(shè)計(jì)資料手冊(cè) 同濟(jì)大學(xué)出版社4 房屋建筑制圖統(tǒng)一標(biāo)準(zhǔn)(GB/T50001-2001)5 建筑制圖標(biāo)準(zhǔn)(GB/T50104-2001)6 門窗圖集(省標(biāo)國(guó)標(biāo))7 建筑設(shè)計(jì)防火規(guī)范8教學(xué)樓建筑設(shè)計(jì)規(guī)范9 建筑做法圖集10畢業(yè)設(shè)計(jì)指南2、結(jié)構(gòu)設(shè)計(jì)部分1 建筑結(jié)構(gòu)荷載規(guī)范(GB50009-2001)2 建筑地基基礎(chǔ)設(shè)計(jì)規(guī)范(GB50007-2002)3 混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范(GB50010-2002)4 建筑抗震設(shè)計(jì)規(guī)范(GB50011-2010)5 高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程(JGJ3-2001)6 建筑結(jié)構(gòu)制圖標(biāo)準(zhǔn)GB/T50105-20017 混凝土結(jié)構(gòu)施工圖平法(03G101-1)8 東南大學(xué)等編.混凝土結(jié)構(gòu)(上、下冊(cè)) 中國(guó)建筑工業(yè)出版社9 李國(guó)強(qiáng)等.建筑結(jié)構(gòu)抗震設(shè)計(jì). 中國(guó)建筑工業(yè)出版社10 方鄂華.高層建筑結(jié)構(gòu)設(shè)計(jì). 中國(guó)建筑工業(yè)出版社11 祝英杰.建筑抗震設(shè)計(jì). 中國(guó)電力出版社煙臺(tái)大學(xué)土木工程學(xué)院畢業(yè)實(shí)習(xí)報(bào)告專業(yè) 土 木 工 程 班級(jí) 土 0712 姓名 陳 興 錄 學(xué)號(hào) 200728501202 指導(dǎo)教師 王曉剛(講師) 2011 年 3 月 7 日畢業(yè)設(shè)計(jì)實(shí)習(xí)報(bào)告 作為一個(gè)土木工程專業(yè)畢業(yè)生,畢業(yè)是大學(xué)階段尤為重要的一個(gè)環(huán)節(jié),它是對(duì)我們大學(xué)階段所學(xué)知識(shí)的一次綜合運(yùn)用,不但使我們各方面的知識(shí)系統(tǒng)化,而且使所學(xué)知識(shí)實(shí)踐化。畢業(yè)實(shí)習(xí)前進(jìn)行一次系統(tǒng)的綜合考察,結(jié)合所學(xué)知識(shí)及自己的畢業(yè)課題,選擇自己的設(shè)計(jì)方向。通過(guò)設(shè)計(jì)實(shí)習(xí)筑設(shè)計(jì)的全過(guò)程,培養(yǎng)我們獨(dú)立分析解決實(shí)際問(wèn)題的能力及創(chuàng)新能力,并鍛煉我們調(diào)查研究的能力,對(duì)畢業(yè)有著重要的指導(dǎo)作用。2011年3月開始,土木工程專業(yè)開始了為期三周的畢業(yè)實(shí)習(xí)。這次實(shí)習(xí)安排在畢業(yè)設(shè)計(jì)之前,具有相當(dāng)重要的意義。畢業(yè)設(shè)計(jì)貫通整個(gè)本科四年所有專業(yè)知識(shí),將平時(shí)所學(xué)的零散知識(shí)點(diǎn)第一次完完整整的串聯(lián)起來(lái),第一次讓我們最真實(shí)的體會(huì)結(jié)構(gòu)設(shè)計(jì)的方法和過(guò)程,對(duì)本專業(yè)學(xué)生今后的工作、生活和繼續(xù)深造具有深遠(yuǎn)的影響。我們從實(shí)際工程中去認(rèn)識(shí)書本知識(shí)的現(xiàn)實(shí)存在。通過(guò)比較,我們可以在自己的設(shè)計(jì)當(dāng)中取長(zhǎng)補(bǔ)短,借鑒他人的先進(jìn)設(shè)計(jì)思想和經(jīng)驗(yàn)。1) 建筑平面設(shè)計(jì)建筑平面設(shè)計(jì)是建筑設(shè)計(jì)的開端,對(duì)建筑物的整體效果起著至關(guān)重要的作用,平面設(shè)計(jì)應(yīng)注意以下幾個(gè)問(wèn)題。(1)滿足建筑物的使用功能要求;(2)各功能房間聯(lián)系方便;(3)建筑物要與周圍環(huán)境相協(xié)調(diào);(4)建筑設(shè)計(jì)滿足經(jīng)濟(jì)合理的要求。2.結(jié)構(gòu)設(shè)計(jì)(1)結(jié)構(gòu)選型本次實(shí)習(xí)工程項(xiàng)目多為多層結(jié)構(gòu)。對(duì)于多層結(jié)構(gòu)而言,在煙臺(tái)地區(qū),采用框架結(jié)構(gòu)既能滿足受力需要,功能需要而且相對(duì)而言經(jīng)濟(jì)性好,因此結(jié)構(gòu)形式多選框架結(jié)構(gòu)或者框架剪力墻結(jié)構(gòu)??蚣芙Y(jié)構(gòu)按結(jié)構(gòu)的材料可分為混凝土框架、鋼框架和型鋼混凝土框架。鋼框架結(jié)構(gòu)一般是在工廠預(yù)制鋼梁、鋼柱,運(yùn)送到施工現(xiàn)場(chǎng)再拼裝連接成整體框架。它具有自重輕、抗震性能好、施工速度快、機(jī)械化程度高等優(yōu)點(diǎn),但用鋼量稍大,耐火性差,后期維修費(fèi)用高?;炷两Y(jié)構(gòu)框架的可模性好,能適應(yīng)不同的平面形狀要求,造價(jià)相對(duì)較低,耐久性好,在我國(guó)得到了廣泛的應(yīng)用。其缺點(diǎn)是現(xiàn)場(chǎng)施工的工作量大,工期長(zhǎng),并需要大量的模板??蚣?剪力墻結(jié)構(gòu)是目前結(jié)構(gòu)選型中常用的形式,是框架結(jié)構(gòu)和剪力墻結(jié)構(gòu)的有機(jī)結(jié)合。框架結(jié)構(gòu)易于形成較大的自由靈活的使用空間,以滿足不同建筑功能的要求;剪力墻則可提供很大的抗側(cè)剛度,以減少結(jié)構(gòu)在風(fēng)荷載或側(cè)向地震作用下的側(cè)向位移,有利于提高結(jié)構(gòu)的抗震能力。二者的有機(jī)結(jié)合既可以滿足大空間的建筑設(shè)計(jì)要求,又可以提供較大的抗側(cè)剛度,減小結(jié)構(gòu)的側(cè)移,滿足建筑的舒適度要求。同時(shí)形成多級(jí)抗震防線,以盡可能減少地震災(zāi)害所帶來(lái)的損失。(2)平面布置結(jié)構(gòu)的平面布置是指在結(jié)構(gòu)平面圖上布置柱和梁的位置以及樓蓋的傳力方式。從抗震角度看,最主要的是使結(jié)構(gòu)平面的質(zhì)量中心和剛度中心相重合或者盡可能靠近,以減小結(jié)構(gòu)的扭轉(zhuǎn)效應(yīng)。煙臺(tái)地區(qū)主要的地震設(shè)防烈度為7度,因此建筑物是需要考慮抗震要求的。在這次實(shí)習(xí)中,很多建筑平面都并不規(guī)整,不滿足平面布置的要求。但是結(jié)構(gòu)設(shè)計(jì)者通過(guò)靈活的設(shè)縫和柱網(wǎng)的布置,將不規(guī)則的建筑平面分割成多個(gè)規(guī)則的平面,從而使各個(gè)單獨(dú)的體系滿足抗震要求。(3)豎向布置豎向布置的要求是:結(jié)構(gòu)沿豎向(鉛直方向)應(yīng)盡可能均勻且少變化,使結(jié)構(gòu)的剛度沿豎向均勻。由于本次參觀的工程項(xiàng)目都屬于多層建筑,因此在豎向布置上的要求并不多。(4)基礎(chǔ)設(shè)計(jì)任何建筑物都建在地層上,因此,建筑物的全部荷載都由它下面的地層來(lái)承擔(dān),受建筑物影響的那一部分地層稱為地基,建筑物向地基傳遞荷載的下部結(jié)構(gòu)稱為基礎(chǔ)。進(jìn)行地基基礎(chǔ)設(shè)計(jì)時(shí),必須根據(jù)建筑物的用途和設(shè)計(jì)等級(jí)、建筑布置和上部結(jié)構(gòu)類型,充分考慮建筑場(chǎng)地和地基巖土條件,結(jié)合施工條件以及工期、造價(jià)等各方面的要求,合理選擇地基基礎(chǔ)方案。本次實(shí)習(xí)中各工程采用的基礎(chǔ)形式,既有柱下獨(dú)立基礎(chǔ)(淺基礎(chǔ))又有樁基礎(chǔ)(深基礎(chǔ))。以煙臺(tái)市某辦公樓項(xiàng)目為例:該項(xiàng)目地質(zhì)條件復(fù)雜,同時(shí)地下水位較高,并根據(jù)綜合評(píng)價(jià),采用承臺(tái)樁基礎(chǔ)最為適宜。柱下獨(dú)立基礎(chǔ)用在地基條件較好,樓層結(jié)構(gòu)簡(jiǎn)單的多層建筑。從中我們可以看出,基礎(chǔ)形式的選擇和組合,在符合規(guī)范的前提下,還是有很大的自由度的。(5)柱網(wǎng)的布置柱是框架結(jié)構(gòu)的主要豎向受力構(gòu)件,柱網(wǎng)的布置對(duì)整個(gè)建筑結(jié)構(gòu)的功能和力學(xué)性能有著至關(guān)重要的影響,同時(shí)優(yōu)良的柱網(wǎng)布置能夠方便施工,加快施工進(jìn)度。柱網(wǎng)布置應(yīng)滿足以下要求。1) 滿足生產(chǎn)工藝的要求;2) 滿足建筑平面布置的要求;3) 盡量滿足模屬的要求;4) 施工方便。(6)框架梁的布置柱網(wǎng)確定后,用梁把柱連起來(lái),即形成框架結(jié)構(gòu)。梁柱剛接構(gòu)成雙向梁柱抗測(cè)體系。一般情況下柱在兩個(gè)方向均應(yīng)有梁拉結(jié),故應(yīng)在房屋縱橫向均應(yīng)布置框架梁。因此,實(shí)際的框架結(jié)構(gòu)是一個(gè)空間受力 系。但為計(jì)算簡(jiǎn)便起見,可把實(shí)際框架分成縱橫兩個(gè)方向的平面框架,即縱向框架和橫向框架。兩向框架分別承受各自方向的水平荷載。對(duì)于樓面豎向荷載,可由橫向框架承受,也可由縱向框架承受或縱、橫向共同承受。根據(jù)樓面豎向荷載的傳遞路線,可將框架的承重體系分為三鐘:1) 橫向框架承重體系: 橫向框架跨數(shù)往往較少,有利于增加橫向房屋抗側(cè)移剛度,縱向框架連系梁截面尺寸較小,有利于建筑的通風(fēng)采光。2) 縱向框架承重體系:適用于大空間房屋,凈空間高度大,房屋布置靈活。3) 縱橫向框架混合承重體系:各桿件受力均勻,整體性能好。(3) 總結(jié)實(shí)踐是理論聯(lián)系實(shí)際的過(guò)程,本次實(shí)習(xí)使我加深了對(duì)結(jié)構(gòu)概念的理解,從另一個(gè)更高層次的角度去看待施工,第一次接觸了建筑設(shè)計(jì),了解到了一些設(shè)計(jì)過(guò)程中常見的問(wèn)題和解決思路。在查閱資料的過(guò)程當(dāng)中,了解到了許多有用的概念和理論。同時(shí)也發(fā)現(xiàn)了自己知識(shí)掌握和認(rèn)識(shí)上的一些問(wèn)題。本次實(shí)習(xí)使我更加明確了設(shè)計(jì)的任務(wù)和過(guò)程。我將盡量把這次實(shí)習(xí)所得,靈活的運(yùn)用到即將開始的畢業(yè)設(shè)計(jì)當(dāng)中去。文獻(xiàn)翻譯Plasticty in reinforced concretePrefaceWith the present state of development of finite-element computer programs,the problem of modeling the mechanical-behavior of concrete for use in analytical studies of reinforced concrete structures remains one of the most difficult challengers in the field of structural concrete engineering. Current analysis procedures for reinforced concrete problems under short-term loading are essentially one-dimensional. A common approach uses two parameters: concrete modulus and concrete fracture strength. Various empirical equations for these have been established by curve fitting many biaxial-loading test data. The best known of these expressions is probably the one proposed by Liu, Nilson, and Slate, of Cornell University. Their equivalent one-dimensional approach is appealing because of its simplicity, its broad data base, and the correlations that have been established between the concrete modulus and a variety of concrete strength and strain characteristics. It is well known that this model is mainly applicable to planar problems such as beams, panels, and shells, where the stress is predominantly biaxial.At present, multidimensional analyses are usually made by taking the concrete to be incrementally elastic. When this is done, Poissons ratio must be defined. However ,it is not possible to describe the three-dimensional stress-strain behavior of concrete the materials accurately in the framework of an incremental Hookes law with variable moduli which are functions of the maximum stress and/or strain levels. Recent research in structural concrete under static and dynamic loading has been moving toward the development of three-dimensional stress-strain relations based on the principle of plasticity as well as elasticity. Although extensive work in this area has been done in recent years, no unified treatment of the various mathematical models of concrete and their applications to reinforced concrete structures is yet available. The basic aim of this book is to present such a unified treatment of available mathematical models of concrete as commonly used in reinforced concrete structural analysis.The first five chapters contain a comprehensive review of the usefulness and limitations of the constitutive equations and failure criteria of concrete most frequently used in practice in the past in the analysis of reinforced concrete structures, together with comments and ideas on improvements and refinements in these stress-strain equations. A generals discussion of some experimental facts is followed by a detailed description of three basic types of models and failure criteria: uniaxial and equivalent uniaxial models (chap.2),linear-elastic and brittle-fracture models(chap. 3) nonlinear-elastic and variable-moduli models (chap. 4), and failure criteria of concrete(chap. 5).The four chapters that follow describe in detail the applications of the classical theory of plasticity to the field of reinforced concrete. The use of plasticity theories in reinforced concrete has been development for about 15 years. Most of the research and application has been centered on the theory of perfect plasticity. The yield-line analysis of slabs is among the earliest applications. In recent years, rigid-plastic analysis has been attempted in the hope of establishing a unified approach to determine the strength of walls and beams of various cross-sectionals shapes under the combined action of bending, shear, and torsion. The latest step in the development of concrete constitutive models and finite-element reinforced concrete applications is the work-hardening theory of plasticity. A comprehensive review of the state of the art in the plasticity modeling of the mechanical behavior of plain concrete together with its applications to reinforced concrete structures is given in chaps. 6 to 9. These include elastic, perfectly plastic, and fracture models (chap. 6), limit analysis in plain and reinforced concrete structures (chap.7),elastic-work-hardening-plastic fracture models(chap.8), and finite-element analysis of concrete and reinforced concrete structures (chap. 9).The book is divided basically into three parts. Past One contains a discussion of some basic concepts and experimental facts concerning the stress and strain characteristics of concrete under biaxial and multiaxial stress states. Empirical equations for modulus and fracture strength are presented (chap.1 and 2). Concrete elasticity and generalized failure and fracture criteria are discussed in Part Two (chap.3 to 5), followed by a discussion of concrete plasticity with applications of limit analysis and finite-element analysis to concrete and reinforced concrete structures (chap. 6 to 9) in Part Three.Three-dimensional relationships between stress and elastic strain and between stress and plastic strain are given in Parts Two and Three, respectively. These stress-strain equations provide a general framework in which the work of many investigators is presented. In this way, empirical equations for modulus and fracture strength under biaxial loading, empirical expressions for bulk and shear modulus under multiaxial stress states, orthotropic elasticity ,perfect and work-hardening plasticity ,which have been treated as individual topics in the current literature in assessing the state of the art in mathematical modeling of concrete behavior, are now considered in relation to a common structure. Some of the interrelationships between the empirical equations, elasticity, and plasticity, are demonstrated.The book has been planned so that it can be used as a text, as a tool for the practitioner, and as a compendium for the research worker. Each chapter also contains typical examples of practical problems using the particular constitutive model described in that chapter. Correlations between numerical solutions and field or laboratory observations are also discussed. Comparative numerical studies of concrete and reinforced concrete structures with different constitutive models are made in chap. 9.Students are assumed to have a basic background in mechanics, strength of materials, mathematics, and material behavior, as well as an understanding of the basic mechanics of reinforced concrete. Practitioners can use the book to deepen their understanding of the range of applicability and the limitations of various concrete constitutive models as used in the current analysis and design of reinforced concrete structures, especially with respect to their finite element computer applications. Researchers will find an up-to-date source of information and references in the book.Further ,the set of three-dimensional constitutive equations developed on the basic of the classical theory of plasticity will provide a general framework for further development .Although many of the details have been worked out in the book based on existing experimental data, modifications and some refinements may have to be made in the future as new experimental data become available. Directions of these further improvements and developments are indicated.The book can be used for nonlinear-analysis courses in structural engineering of various lengths, involving mathematical modeling of materials and finite-element modeling of structures. My experience in teaching plasticity courses has been that students come to them with a wide variety of experience. I have therefore endeavored to make the prerequisites as few as possible. Some background on linear elasticity and the finite-element method is assumed. Even this may not be absolutely necessary since I have endeavored to review the basic concepts as they are called for. My aim has been to appeal to the first-year graduate student who has sufficient background in reinforced concrete and is learning about inelastic behavior of structures for the first time and to the practicing engineer who completed his basic courses in structural engineering several years ago.鋼筋混凝土的可塑性序言基于現(xiàn)代計(jì)算機(jī)程序有限元的發(fā)展情況,在結(jié)構(gòu)混凝土工程領(lǐng)域具體分析鋼筋混凝土的力學(xué)行為仍是最困難的一個(gè)問(wèn)題。現(xiàn)時(shí)分析鋼筋混凝土問(wèn)題的程序在短期載的本質(zhì)上是單維的,缺乏立體感。一個(gè)普通的方法是使用兩個(gè)具體的參數(shù):混凝土模量和混凝土斷裂強(qiáng)度。在雙向載荷測(cè)試數(shù)據(jù)的曲線擬合下各種經(jīng)驗(yàn)方程已經(jīng)建立。最有名的一個(gè)解釋或許就是由康奈爾大學(xué)的liu、nilson和slate提出的。他們的等價(jià)單維理論之所以受到歡迎是因?yàn)樗暮?jiǎn)單、廣泛的數(shù)據(jù)基和在混凝土模量和各種混凝土強(qiáng)度、壓力特點(diǎn)中建立起來(lái)的相關(guān)性。眾所周知,這一模量主要應(yīng)用于平面問(wèn)題,例如梁、石板、石殼,這些具有明顯二軸壓力所在的地方。目前,多方面的分析通常用的都是混凝土的增量彈性。當(dāng)這樣的時(shí)候,Poisson的定律必須被定義,然而,想要在增量胡克定律中最大壓力和拉力程度的變量函數(shù)的框架中精確的描述立體的混凝土材料應(yīng)力應(yīng)變行為是不可能的。最近在動(dòng)力學(xué)和靜力學(xué)載荷下的結(jié)構(gòu)混凝土的研究已經(jīng)朝著基于可塑性和可彈性原則的立體應(yīng)力應(yīng)變關(guān)系發(fā)展,盡管近幾年在這一領(lǐng)域已經(jīng)做過(guò)大量的工作,但是在混凝土變量數(shù)學(xué)模型和它們?cè)阡摻罨炷两Y(jié)構(gòu)中的應(yīng)用還是沒(méi)有一個(gè)統(tǒng)一的方法可行。這本書的根本目的就是在混凝土數(shù)學(xué)建模和鋼筋混凝土結(jié)構(gòu)的分析上呈現(xiàn)這么一個(gè)統(tǒng)一的可行的方法。前五章包含一個(gè)全面的觀點(diǎn),講的是在過(guò)去鋼筋混凝土結(jié)構(gòu)分析的實(shí)踐中最常用的混凝土構(gòu)成式的實(shí)用性和局限性以及失敗的標(biāo)準(zhǔn),連同一些從這些應(yīng)力應(yīng)變式中提煉出來(lái)的可以提高和改進(jìn)的意見和想法。接下來(lái)是一個(gè)實(shí)驗(yàn)事實(shí)的大體討論,詳細(xì)的描述了三個(gè)基本類型的模型和失

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論