已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Observation of GravitationalWaves from a Binary Black Hole MergerThe LIGO Scientific Collaboration and The Virgo CollaborationOn September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer GravitationalwaveObservatory (LIGO) simultaneously observed a transient gravitational-wave signal. The signalsweeps upwards in frequency from 35 Hz to 250 Hz with a peak gravitational-wave strain of 1:0 _ 1021.It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holesand the ringdown of the resulting single black hole. The signal was observed with a matched filter signalto-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent toa significance greater than 5:1 _. The source lies at a luminosity distance of 410+160180 Mpc correspondingto a redshift z = 0:09+0:030:04. In the source frame, the initial black hole masses are 36+54M_ and 29+44M_,and the final black hole mass is 62+44M_, with 3:0+0:50:5M_c2 radiated in gravitational waves. All uncertaintiesdefine 90% credible intervals. These observations demonstrate the existence of binary stellar-massblack hole systems. This is the first direct detection of gravitational waves and the first observation of abinary black hole merger.PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.-dIntroduction In 1916, the year after the final formulationof the field equations of general relativity, Albert Einsteinpredicted the existence of gravitational waves. Hefound that the linearized weak-field equations had wavesolutions: transverse waves of spatial strain that travel atthe speed of light, generated by time variations of the massquadrupole moment of the source 1, 2. Einstein understood從一個(gè)黑洞的合并gravitationalwaves觀察LIGO科學(xué)合作和處女座的合作在09:50:45 UTC兩探測(cè)器的激光干涉引力波2015年9月14日天文臺(tái)(LIGO)同時(shí)觀察到一個(gè)短暫的引力波信號(hào)。信號(hào)把以上的頻率從35赫茲到250赫茲以1:0 _ 1021峰引力波應(yīng)變。它與波形的靈感和一對(duì)廣義相對(duì)論所預(yù)言的黑洞合并和由此產(chǎn)生的單一黑洞的響鈴。一個(gè)匹配濾波器的信號(hào),觀察信號(hào)噪音之比為24和假警報(bào)率估計(jì)為小于1事件每000 203年,相當(dāng)于一個(gè)意義大于5:1 _。源位于160 + 410的亮度距離180 MPC相應(yīng)一個(gè)紅移z = + 0:03 0:090:04。在源框架,初始黑洞群眾36 + 54m_和29 + 44m_,而最終黑洞質(zhì)量為6244m_,以3:0 + 0:50:5m_c2輻射引力波。所有不確定因素定義90%可信區(qū)間。這些觀察表明存在的二進(jìn)制恒星質(zhì)量黑洞系統(tǒng)。這是第一個(gè)直接探測(cè)引力波和第一個(gè)觀察的二元黑洞合并。PACS編號(hào):04.80.nn,04.25.dg,95.85.sz,D 97.80。介紹-在1916,年后的最后制定廣義相對(duì)論的場(chǎng)方程,愛因斯坦艾伯特預(yù)測(cè)引力波的存在。他發(fā)現(xiàn)線性化的弱場(chǎng)方程有波解決方案:橫向波的空間應(yīng)變,旅行光的速度,所產(chǎn)生的時(shí)間變化的質(zhì)量四極矩的來源 1,2 。愛因斯坦明白that gravitational-wave amplitudes would be remarkablysmall; moreover, until the Chapel Hill conference in1957 there was significant debate about the physical realityof gravitational waves 3.Also in 1916, Schwarzschild published a solution for thefield equations 4 that was later understood to describe ablack hole 5, 6, and in 1963 Kerr generalized the solutionto rotating black holes 7. Starting in the 1970s theoreticalwork led to the understanding of black hole quasinormalmodes 810, and in the 1990s higher-order post-Newtonian calculations 11 preceded extensive analyticalstudies of relativistic two-body dynamics 12, 13. In thepast decade these analytical advances, together with breakthroughsin numerical relativity 1416, have enabled accuratesimulations of binary black hole mergers. Whilenumerous black hole candidates have now been identifiedthrough electromagnetic observations 1719, black holemergers have not previously been observed.The discovery of the binary pulsar systemPSR B1913+16 by Hulse and Taylor 20 and subsequentobservations of its energy loss by Taylor andWeisberg 21 demonstrated the existence of gravitationalwaves. This discovery, along with emerging astrophysicalunderstanding 22, led to the recognition that direct observationsof the amplitude and phase of gravitational waveswould enable studies of additional relativistic systems andprovide new tests of general relativity, especially in thedynamic strong-field regime.Experiments to detect gravitational waves began withWeber and his resonant mass detectors in the 1960s 23,followed by an international network of cryogenic resonantdetectors 24. Interferometric detectors were firstsuggested in the early 1960s 25 and the 1970s 26. Astudy of the noise and performance of such detectors 27,這種引力波的振幅將非常明顯小;而且,直到教堂山會(huì)議在1957關(guān)于物理現(xiàn)實(shí)的重大辯論引力波 3 。在1916出版的,史瓦西解場(chǎng)方程 4 ,后來被理解為描述黑洞 5,6 ,并在1963克爾廣義的解決方案旋轉(zhuǎn)黑洞 7 。從20世紀(jì)70年代開始的理論工作導(dǎo)致黑洞似的理解模式 8,10 ,并在20世紀(jì)90年代高階牛頓計(jì)算 11 之前廣泛的分析相對(duì)論雙體動(dòng)力學(xué)研究 12,13 。在過去的十年中,這些分析的進(jìn)步,與突破在數(shù)值相對(duì)論 14,16 ,使精確二元黑洞合并的模擬。而現(xiàn)在已經(jīng)確定了許多黑洞候選通過電磁觀測(cè) 17,19 ,黑洞合并以前沒有被觀察到。雙星系統(tǒng)的發(fā)現(xiàn)PSR b1913 + 16哈爾斯和泰勒 20 和隨后的泰勒對(duì)其能量損失的觀測(cè)韋斯伯格 21 證明引力的存在波。這一發(fā)現(xiàn),隨著新興天體物理學(xué)理解 22 ,導(dǎo)致認(rèn)識(shí)到直接觀察引力波的振幅和相位將使額外的相對(duì)論系統(tǒng)的研究和提供新的廣義相對(duì)論,特別是在動(dòng)力強(qiáng)場(chǎng)。探測(cè)引力波的實(shí)驗(yàn)開始了在20世紀(jì)60年代,韋伯和他的共振質(zhì)譜檢測(cè)器 23 ,其次是一個(gè)國(guó)際低溫共振網(wǎng)絡(luò)探測(cè)器 24 。干涉探測(cè)器建議在20世紀(jì)60年代初 25 和20世紀(jì)70年代 26 。一這種探測(cè)器的噪聲和性能的研究 27 ,and further concepts to improve them 28, led to proposalsfor long-baseline broadband laser interferometers withthe potential for significantly increased sensitivity 2932.By the early 2000s, a set of initial detectors was completed,including TAMA300 in Japan, GEO600 in Germany,the Laser Interferometer Gravitational-wave Observatory(LIGO) in the United States, and Virgo in Italy.Combinations of these detectors made joint observationsfrom 2002 through 2011, setting upper limits on a varietyof gravitational-wave sources while evolving into a globalnetwork. In 2015 Advanced LIGO became the first of asignificantly more sensitive network of advanced detectorsto begin observations 3336.A century after the fundamental predictions of Einsteinand Schwarzschild, we report the first direct detection ofgravitational waves and the first direct observation of a binaryblack hole system merging to form a single black hole.Our observations provide unique access to the propertiesof space-time in the strong-field, high velocity regime andconfirm predictions of general relativity for the nonlineardynamics of highly disturbed black holes.Observation On September 14, 2015 at 09:50:45 UTCthe LIGO Hanford, WA, and Livingston, LA, observatoriesdetected the coincident signal GW150914 shown inFig. 1. The initial detection was made by low-latencysearches for generic gravitational wave transients 41 andwas reported within three minutes of data acquisition 43.Subsequently, matched-filter analyses that use relativisticmodels of compact binary waveforms 44, 45 recoveredGW150914 as the most significant event from each detectorfor the observations reported here. Occuring within the10 ms inter-site propagation time, the events have a combinedsignal-to-noise ratio (SNR) of 24.LIGO-P150914-v13和進(jìn)一步的概念,以提高他們 28 ,導(dǎo)致建議長(zhǎng)基線寬帶激光干涉儀潛在的顯著增加的敏感性 29,32 。在本世紀(jì)初,一組初始探測(cè)器完成,包括在日本的TAMA300,GEO600在德國(guó),激光干涉引力波天文臺(tái)(LIGO)在美國(guó),意大利和處女座。這些探測(cè)器的組合進(jìn)行聯(lián)合觀測(cè)從2002到2011,設(shè)定上限引力波的來源,同時(shí)發(fā)展成為一個(gè)全球性的網(wǎng)絡(luò)。2015高級(jí)LIGO成為第一先進(jìn)探測(cè)器的更靈敏的網(wǎng)絡(luò)開始觀察 33,36 。一個(gè)世紀(jì)后,愛因斯坦的基本預(yù)測(cè)和史瓦西,我們報(bào)告的第一個(gè)直接的檢測(cè)引力波和二元的直接觀測(cè)黑洞系統(tǒng)合并形成一個(gè)黑洞。我們的觀察提供了獨(dú)特的訪問屬性在強(qiáng)場(chǎng),高速度的制度和確定非線性廣義相對(duì)論的預(yù)測(cè)高度不安的黑洞動(dòng)力學(xué)。在09:50:45 UTC 2015年9月14日觀測(cè)LIGO漢福德,WA,和利文斯頓,La,天文臺(tái)檢測(cè)到的信號(hào)gw150914表現(xiàn)一致圖1。初始檢測(cè)是由低延遲搜索一般的引力波瞬變 41 和據(jù)報(bào)道,三分鐘內(nèi)的數(shù)據(jù)采集 43 。隨后,匹配濾波器的分析,使用相對(duì)論緊湊的二進(jìn)制波形模型 44,45 恢復(fù)gw150914從每個(gè)探測(cè)器的最重大的事件這里的觀測(cè)報(bào)告。發(fā)生在10毫秒站點(diǎn)間的傳播時(shí)間,事件有一個(gè)組合信噪比(信噪比)為24。ligo-p150914-v13-1.0-0.50.00.51.0H1 observedL1 observedH1 observed (shifted, inverted)Hanford, Washington (H1) Livingston, Louisiana (L1)-1.0-0.50.00.51.0Strain (10 21)Numerical relativityReconstructed (wavelet)Reconstructed (template)Numerical relativityReconstructed (wavelet)Reconstructed (template)-0.50.00.5Residual Residual0.30 0.35 0.40 0.45Time (s)3264128256512Frequency (Hz)0.30 0.35 0.40 0.4510.5零零點(diǎn)五一H1的觀察L1觀察H1觀察(移,倒)恒福利文斯頓,華盛頓(H1),路易斯安那(L1)10.5零零點(diǎn)五一應(yīng)變(21 - 10)數(shù)值相對(duì)論重構(gòu)(小波)重構(gòu)(模板)數(shù)值相對(duì)論重構(gòu)(小波)重構(gòu)(模板)0.5零零點(diǎn)五殘留殘留0.35 0.40 0.45 0.30時(shí)間(秒)三十二六十四一百二十八二百五十六五百一十二頻率(赫茲)0.35 0.40 0.45 0.30Time (s)02468Normalized amplitudeFIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1,right column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time seriesare filtered with a 35350 Hz band-pass filter to suppress large fluctuations outside the detectors most sensitive frequency band, andband-reject filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right:L1 strain. GW150914 arrived first at L1 and 6:9+0:50:4 ms later at H1; for a visual comparison the H1 data are also shown, shifted intime by this amount and inverted (to account for the detectors relative orientations). Second row: Gravitational-wave strain projectedonto each detector in the 35350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistentwith those recovered from GW150914 37, 38 confirmed to 99.9% by an independent calculation based on 15. Shaded areas show90% credible regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black holetemplate waveforms 39. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linearcombination of sine-Gaussian wavelets 40, 41. These reconstructions have a 94% overlap, as shown in 39. Third row: Residualsafter subtracting the filtered numerical relativity waveform from the filtered detector time series. Bottom row: A time-frequencyrepresentation 42 of the strain data, showing the signal frequency increasing over time.Only the LIGO detectors were observing at the time ofGW150914. The Virgo detector was being upgraded, and時(shí)間(秒)零二四六八歸一化振幅圖1。通過LIGO漢福德觀測(cè)引力波事件gw150914(H1,左柱板)和利文斯頓(L1,右欄面板)探測(cè)器。時(shí)間是相對(duì)于2015年9月14日在09:50:45 UTC。用于可視化,所有時(shí)間序列被過濾的35個(gè)350赫茲的帶通濾波器,以抑制大的波動(dòng)以外的探測(cè)器的最敏感的頻段,和帶阻濾波器,以消除在圖3譜圖中所見的強(qiáng)譜線。后排,左:H1菌株。頂排,右邊:L1菌株。gw150914先到達(dá)了L1和9 + 0:50:4 MS后來在H1;一個(gè)視覺比較的數(shù)據(jù)也顯示,在轉(zhuǎn)移時(shí)間通過這個(gè)量和反轉(zhuǎn)(以帳戶的探測(cè)器的相對(duì)方向)。第二行:引力波應(yīng)變投影在35至350赫茲波段上的每個(gè)探測(cè)器。固體線顯示一個(gè)參數(shù)一致的系統(tǒng)的數(shù)值相對(duì)性波形與那些從gw150914 38 37恢復(fù),證實(shí)99.9%基于 15 獨(dú)立計(jì)算。陰影區(qū)域顯示獨(dú)立波形重建的90%個(gè)可信區(qū)域。一個(gè)(暗灰色)模型的信號(hào),使用二進(jìn)制黑洞模板波形 39 。其他(淺灰色)不使用物理模型,而計(jì)算應(yīng)變信號(hào)為線性正弦-高斯小波的組合 40,41 。這些重建有94%個(gè)重疊,如圖39所示。第三行:殘差減去濾波后的數(shù)值相對(duì)論波形的濾波檢測(cè)器的時(shí)間序列。底部行:時(shí)頻表示 42 的應(yīng)變數(shù)據(jù),示出的信號(hào)頻率隨著時(shí)間的推移而增加。只有LIGO探測(cè)器觀測(cè)時(shí)gw150914。處女座的探測(cè)器正在升級(jí)GEO600, though not sensitive enough to have detected thisevent, was operating but not in observational mode. Withonly two detectors the source position is primarily determinedby the relative arrival time and localized to an areaof approximately 600 deg2 (90% credible region) 39, 46.The basic features of GW150914 point to it being producedby the coalescence of two black holesi.e., theirorbital inspiral and merger, and subsequent final black holeringdown. Over 0:2 s, the signal increases in frequencyand amplitude in about 8 cycles from 35 to 150 Hz wherethe amplitude reaches a maximum. The most plausible explanationfor this evolution is the inspiral of two orbiting2LIGO-P150914-v130.30 0.35 0.40 0.45Time (s)0.6Velocity (c)Black hole separationBlack hole relative velocity01234Separation (RS)-1.0-0.50.00.51.0GEO600,雖然沒有檢測(cè)到足夠的敏感事件,正在運(yùn)行,但不是在觀察模式。隨著只有2個(gè)探測(cè)器的源位置主要是確定相對(duì)到達(dá)時(shí)間和局部區(qū)域約600 deg2(90%可信區(qū)間) 39,46 。對(duì)gw150914點(diǎn)的基本特征,它產(chǎn)生由兩個(gè)黑洞即聚結(jié),他們軌道inspiral和合并,以及隨后的最后的黑洞振鈴。在0:2的頻率信號(hào)的增加和幅度在約8個(gè)周期從35到150赫茲的地方振幅達(dá)到最大值。最可信的解釋這種演變是兩軌道的靈感二ligo-p150914-v130.35 0.40 0.45 0.30時(shí)間(秒)零點(diǎn)三零點(diǎn)四零點(diǎn)五零點(diǎn)六速度(丙)黑洞分離黑洞相對(duì)速度零一二三四分離(盧比)10.5零零點(diǎn)五一Strain (10 21)Inspiral Merger RingdownNumerical relativityReconstructed (template)FIG. 2. Top: Estimated gravitational-wave strain amplitudefrom GW150914 projected onto H1. This shows the full bandwidthof the waveforms, without the filtering used for Fig. 1.The inset images show numerical-relativity models of the blackhole horizons as the black holes coalesce. Bottom: The Keplerianeffective black hole separation in units of Schwarzschildradii (RS = 2GM=c2) and the effective relative velocity givenby the post-Newtonian parameter v=c = (GM_f=c3)1=3, wheref is the gravitational-wave frequency calculated with numericalrelativity and M is the total mass (value from Table I).masses, m1 and m2, due to gravitational-wave emission.At the lower frequencies, such evolution is characterizedby the chirp mass 47M=(m1m2)3=5(m1 + m2)1=5 =c3G_596_8=3f11=3f_3=5;where f and f_ are the observed frequency and its timederivative and G and c are the gravitational constant andspeed of light. Estimating f and f_ from the data in Fig. 1we obtain a chirp mass ofM 30M_, implying that thetotal mass M = m1 + m2 is _70M_ in the detector應(yīng)變(21 - 10)靈感合并振鈴數(shù)值相對(duì)論重構(gòu)(模板)圖2。頂:估計(jì)引力波振幅從gw150914投射到H1。這顯示了全帶寬的波形,沒有用于圖1的過濾。嵌入圖像顯示黑色的數(shù)值相對(duì)論模型孔的視野為黑洞合并。底部:開普勒在史瓦西黑洞的單位有效分離半徑(RS = 2GM = C2)和有效相對(duì)速度給定采用后牛頓參數(shù)V = C =(gm_f = 1 = 3,其中C3)用數(shù)值計(jì)算的引力波頻率相對(duì)和我是總的質(zhì)量(從表我的價(jià)值)。群眾,M1和M2,由于引力波輻射。在較低的頻率,這樣的演變特征由線性調(diào)頻質(zhì)量 47 米=(m2)3 = 5(M1 + M2)1 = 5 =C3G_五九十六_8 = 11 = 3f_ 3F_3 = 5;其中F和f_是所觀察到的頻率和時(shí)間衍生工具和克和碳是引力常數(shù)和光的速度。從圖1中的數(shù)據(jù)估計(jì)F和f_我們得到一個(gè)線性調(diào)頻質(zhì)量間的30m_,暗示總質(zhì)量M = M1 + M2 _在探測(cè)器70m_frame. This bounds the sum of the Schwarzschild radii ofthe binary components to 2GM=c2 _210 km. To reachan orbital frequency of 75 Hz (half the gravitational-wavefrequency) the objects must have been very close and verycompact; equal Newtonian point masses orbiting at this frequencywould be only 350 km apart. A pair of neutronstars, while compact, would not have the required mass,while a black hole-neutron star binary with the deducedchirp mass would have a very large total mass, and wouldthus merge at much lower frequency. This leaves blackholes as the only known objects compact enough to reachan orbital frequency of 75 Hz without contact. Furthermore,the decay of the waveform after it peaks is consistentwith the damped oscillations of a black hole relaxingto a final stationary Kerr configuration. Below, we presenta general-relativistic analysis of GW150914; Fig. 2 showsthe calculated waveform using the resulting source parameters.DetectorsGravitational-wave astronomy exploits multiple,widely separated detectors to distinguish gravitationalwaves from local instrumental and environmental noise, toprovide source sky localization, and to measure wave polarizations.The LIGO sites each operate a single AdvancedLIGO detector 33, a modified Michelson interferometer(see Fig. 3) that measures gravitational-wave strain as adifference in length of its orthogonal arms. Each arm isformed by two mirrors, acting as test masses, separated byLx = Ly = L = 4 km. A passing gravitational wave effectivelyalters the arm lengths such that the measured differenceis _L(t) = _Lx _Ly = h(t)L, where h is thegravitational-wave strain amplitude projected onto the detector.This differential length variation alters the phase differencebetween the two light fields returning to the beamsplitter,transmitting an optical signal proportional to the幀。這個(gè)邊界的史瓦西半徑的總和以綠肥= C2_二進(jìn)制組件210公里。到達(dá)75赫茲(半引力波的一半的軌道頻率頻率)的對(duì)象必須是非常接近和非常在這個(gè)頻率下繞軌道運(yùn)行的緊湊型將只“350公里外。一對(duì)中子星星,雖然致密,不會(huì)有所需的質(zhì)量,黑洞中子星雙星與推導(dǎo)出線性調(diào)頻質(zhì)量將有一個(gè)非常大的總質(zhì)量,并將因此,合并在低得多的頻率。這片樹葉黑色孔作為唯一已知的對(duì)象,結(jié)構(gòu)緊湊,足以達(dá)到?jīng)]有接觸的75赫茲的軌道頻率。此外,波形峰后的衰減是一致的隨著阻尼振蕩的黑洞放松到最后靜止的克爾配置。下面,我們提出一個(gè)gw150914廣義相對(duì)論分析;如圖2所示。使用所得的源參數(shù)計(jì)算出的波形。探測(cè)引力波天文學(xué)利用多個(gè),廣泛分離的探測(cè)器來區(qū)分引力波從當(dāng)?shù)氐膬x器和環(huán)境噪聲,到天空提供源定位,并測(cè)量波的極化。LIGO網(wǎng)站每運(yùn)行一個(gè)單一的先進(jìn)LIGO探測(cè)器 33 ,一種改進(jìn)的邁克爾遜干涉儀(見圖3),測(cè)量引力波的應(yīng)變正交臂長(zhǎng)度差。每只手臂由雙反射鏡形成的,作為測(cè)試群眾,由LX =,= L = 4公里。有效地傳遞引力波改變臂的長(zhǎng)度,使得測(cè)量的差異是_l(t)= _lx_ly = h(t),其中h是將引力波應(yīng)變振幅投射到探測(cè)器上。這種差分長(zhǎng)度的變化,改變相位差兩光場(chǎng)回到分束器之間,發(fā)送光信號(hào)與所gravitational-wave strain to the output photodetector.To achieve sufficient sensitivity to measure gravitationalwaves the detectors include several enhancements to thebasic Michelson interferometer. First, each arm containsa resonant optical cavity, formed by its two test mass mirrors,that multiplies the effect of a gravitational wave onthe light phase by a factor of 300 49. Second, a partiallytransmissive power-recycling mirror at the input providesadditional resonant buildup of the laser light in the interferometeras a whole 50, 51: 20Wof laser input is increasedto 700W incident on the beamsplitter, which is further increasedto 100kW circulating in each arm cavity. Third,a partially transmissive signal-recycling mirror at the outputoptimizes the gravitational-wave signal extraction bybroadening the bandwidth of the arm cavities 52, 53.The interferometer is illuminated with a 1064-nm wavelengthNd:YAG laser, stabilized in amplitude, frequency,and beam geometry 54, 55. The gravitational-wave signalis extracted at the output port using homodyne readout56.These interferometry techniques are designed to maximizethe conversion of strain to optical signal, thereby minimizingthe impact of photon shot noise (the principal noiseat high frequencies). High strain sensitivity also requiresthat the test masses have low displacement noise, whichis achieved by isolating them from seismic noise (low frequencies)and designing them to have low thermal noise(mid frequencies). Each test mass is suspended as the finalstage of a quadruple pendulum system 57, supported byan active seismic isolation platform 58. These systemscollectively provide more than 10 orders of magnitude ofisolation from ground motion for freq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度暖通工程保險(xiǎn)合同
- 課題申報(bào)參考:明清時(shí)期俄人旅華游記中的中國(guó)形象研究
- 課題申報(bào)參考:面向大學(xué)生情緒調(diào)節(jié)的人工智能眼動(dòng)交互音樂生成系統(tǒng)設(shè)計(jì)研究
- 二零二五年度模具行業(yè)創(chuàng)新項(xiàng)目合作合同2篇
- 2025版選礦廠礦山地質(zhì)勘查承包合同樣本3篇
- 2025年度個(gè)人汽車租賃與停車服務(wù)合同4篇
- 2025版寧夏糧食和物資儲(chǔ)備局糧食儲(chǔ)備庫(kù)智能化升級(jí)合同3篇
- 2025年度牛糞處理設(shè)施融資租賃合同范本4篇
- 2025版農(nóng)副業(yè)科技成果轉(zhuǎn)化承包合同書二份3篇
- 二零二五年度磚廠生產(chǎn)線承包租賃合同3篇
- 2024年銀行考試-興業(yè)銀行筆試參考題庫(kù)含答案
- 泵站運(yùn)行管理現(xiàn)狀改善措施
- 2024屆武漢市部分學(xué)校中考一模數(shù)學(xué)試題含解析
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 第19章 一次函數(shù) 單元整體教學(xué)設(shè)計(jì) 【 學(xué)情分析指導(dǎo) 】 人教版八年級(jí)數(shù)學(xué)下冊(cè)
- 浙教版七年級(jí)下冊(cè)科學(xué)全冊(cè)課件
- 弧度制及弧度制與角度制的換算
- 瓦楞紙箱計(jì)算公式測(cè)量方法
- 江蘇省中等職業(yè)學(xué)校學(xué)業(yè)水平考試商務(wù)營(yíng)銷類(營(yíng)銷方向)技能考試測(cè)試題
- DB32-T 4004-2021水質(zhì) 17種全氟化合物的測(cè)定 高效液相色譜串聯(lián)質(zhì)譜法-(高清現(xiàn)行)
- DB15T 2724-2022 羊糞污收集處理技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論