數(shù)學(xué)大綱1.doc_第1頁(yè)
數(shù)學(xué)大綱1.doc_第2頁(yè)
數(shù)學(xué)大綱1.doc_第3頁(yè)
數(shù)學(xué)大綱1.doc_第4頁(yè)
數(shù)學(xué)大綱1.doc_第5頁(yè)
已閱讀5頁(yè),還剩49頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2011年高考考試大綱(新課標(biāo))數(shù)學(xué)(文)考試性質(zhì)普通高等學(xué)校招生全國(guó)統(tǒng)一考試是合格的高中畢業(yè)生和具有同等學(xué)力的考生參加的選拔性考試.高等學(xué)校根據(jù)考生成績(jī),按已確定的招生計(jì)劃,德、智、體全面衡量,擇優(yōu)錄取.因此,高考應(yīng)具有較高的信度、效度,必要的區(qū)分度和適當(dāng)?shù)碾y度.考試內(nèi)容根據(jù)普通高等學(xué)校對(duì)新生文化素質(zhì)的要求,依據(jù)中華人民共和國(guó)教育部2003年頒布的普通高中課程方案(實(shí)驗(yàn))和普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))的必修課程、選修課程系列1和系列4的內(nèi)容,確定文史類高考數(shù)學(xué)科考試內(nèi)容. 數(shù)學(xué)科的考試,按照“考查基礎(chǔ)知識(shí)的同時(shí),注重考查能力”的原則,確立以能力立意命題的指導(dǎo)思想,將知識(shí)、能力和素質(zhì)融為一體,全面檢測(cè)考生的數(shù)學(xué)素養(yǎng). 數(shù)學(xué)科考試,要發(fā)揮數(shù)學(xué)作為主要基礎(chǔ)學(xué)科的作用,要考查考生對(duì)中學(xué)的基礎(chǔ)知識(shí)、基本技能的掌握程度,要考查考生對(duì)數(shù)學(xué)思想方法和數(shù)學(xué)本質(zhì)的理解水平,要考查進(jìn)入高等學(xué)校繼續(xù)學(xué)習(xí)的潛能.一、考核目標(biāo)與要求1.知識(shí)要求知識(shí)是指普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))(以下簡(jiǎn)稱新課程標(biāo)準(zhǔn))中所規(guī)定的必修課程、選修課程系列1和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進(jìn)行運(yùn)算,處理數(shù)據(jù)、繪制圖表等基本技能.各部分知識(shí)整體要求及其定位參照課程標(biāo)準(zhǔn)相應(yīng)模塊的有關(guān)說(shuō)明. 對(duì)知識(shí)的要求依次是了解、理解、掌握三個(gè)層次. (1)了解:要求對(duì)所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會(huì))在有關(guān)的問(wèn)題中識(shí)別和認(rèn)識(shí)它. 這一層次所涉及的主要行為動(dòng)詞有:了解,知道、識(shí)別,模仿,會(huì)求、會(huì)解等. (2)理解:要求對(duì)所列知識(shí)內(nèi)容有較深刻的理性認(rèn)識(shí),知道知識(shí)間的邏輯關(guān)系,能夠?qū)λ兄R(shí)作正確的描述說(shuō)明,用數(shù)學(xué)語(yǔ)言表達(dá),能夠利用所學(xué)的知識(shí)內(nèi)容對(duì)有關(guān)問(wèn)題作比較、判別、討論,具備利用所學(xué)知識(shí)解決簡(jiǎn)單問(wèn)題的能力. 這一層次所涉及的主要行為動(dòng)詞有:描述,說(shuō)明,表達(dá),推測(cè)、想象,比較、判別,初步應(yīng)用等. (3)掌握:要求對(duì)所列的知識(shí)內(nèi)容能夠推導(dǎo)證明,能夠利用所學(xué)知識(shí)對(duì)問(wèn)題能夠進(jìn)行分析、研究、討論,并且加以解決. 這一層次所涉及的主要行為動(dòng)詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問(wèn)題等.2.能力要求能力是指空間想象能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí). (1)空間想象能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì). 空間想象能力是對(duì)空間形式的觀察、分析、抽象的能力.主要表現(xiàn)為識(shí)圖、畫(huà)圖和對(duì)圖形的想象能力.識(shí)圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫(huà)圖是指將文字語(yǔ)言和符號(hào)語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言,以及對(duì)圖形添加輔助圖形或?qū)D形進(jìn)行各種變換.對(duì)圖形的想象主要包括有圖想圖和無(wú)圖想圖兩種,是空間想像能力高層次的標(biāo)志. (2)抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對(duì)象的共同屬性區(qū)分出來(lái)的思維過(guò)程.抽象和概括是相互聯(lián)系的,沒(méi)有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某種觀點(diǎn)或作出某項(xiàng)結(jié)論. 抽象概括能力就是從具體的、生動(dòng)的實(shí)例,在抽象概括的過(guò)程中,發(fā)現(xiàn)研究對(duì)象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能將其應(yīng)用于解決問(wèn)題或作出新的判斷. (3)推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成,論證是由已有的正確的前提到被論證的結(jié)論的一連串的推理過(guò)程.推理既包括演繹推理,也包括合情推理.論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明. 中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實(shí)性的初步的推理能力. (4)運(yùn)算求解能力:會(huì)根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問(wèn)題的條件尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算. 運(yùn)算求解能力是思維能力和運(yùn)算技能的結(jié)合.運(yùn)算包括對(duì)數(shù)字的計(jì)算、估值和近似計(jì)算,對(duì)式子的組合變形與分解變形,對(duì)幾何圖形各幾何量的計(jì)算求解等.運(yùn)算能力包括分析運(yùn)算條件、探究運(yùn)算方向、選擇運(yùn)算公式、確定運(yùn)算程序等一系列過(guò)程中的思維能力,也包括在實(shí)施運(yùn)算過(guò)程中遇到障礙而調(diào)整運(yùn)算的能力. (5)數(shù)據(jù)處理能力:會(huì)收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對(duì)研究問(wèn)題有用的信息,并作出判斷. 數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計(jì)或統(tǒng)計(jì)案例中的方法對(duì)數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問(wèn)題. (6)應(yīng)用意識(shí):能綜合運(yùn)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決相關(guān)學(xué)科、生產(chǎn)、生活中簡(jiǎn)單的數(shù)學(xué)問(wèn)題;能理解對(duì)問(wèn)題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題;能應(yīng)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證,并能用數(shù)學(xué)語(yǔ)言正確地表達(dá)和說(shuō)明.應(yīng)用的主要過(guò)程是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,構(gòu)造數(shù)學(xué)模型,并加以解決. (7)創(chuàng)新意識(shí):能發(fā)現(xiàn)問(wèn)題、提出問(wèn)題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性地解決問(wèn)題. 創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn).對(duì)數(shù)學(xué)問(wèn)題的“觀察、猜測(cè)、抽象、概括、證明”,是發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的重要途徑,對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的程度越高,顯示出的創(chuàng)新意識(shí)也就越強(qiáng).3.個(gè)性品質(zhì)要求個(gè)性品質(zhì)是指考生個(gè)體的情感、態(tài)度和價(jià)值觀.要求考生具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義. 要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹(shù)立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.4.考查要求數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過(guò)分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu). (1)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既要全面又要突出重點(diǎn),對(duì)于支撐學(xué)科知識(shí)體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識(shí)的綜合性,不刻意追求知識(shí)的覆蓋面.從學(xué)科的整體高度和思維價(jià)值的高度考慮問(wèn)題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度. (2)對(duì)數(shù)學(xué)思想方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識(shí)相結(jié)合,通過(guò)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想方法的掌握程度. (3)對(duì)數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對(duì)知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來(lái)檢測(cè)考生將知識(shí)遷移到不同情境中去的能力,從而檢測(cè)出考生個(gè)體理性思維的廣度和深度,以及進(jìn)一步學(xué)習(xí)的潛能. 對(duì)能力的考查要全面考查能力,強(qiáng)調(diào)綜合性、應(yīng)用性,并要切合學(xué)生實(shí)際.對(duì)推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點(diǎn),強(qiáng)調(diào)其科學(xué)性、嚴(yán)謹(jǐn)性、抽象性;對(duì)空間想象能力的考查主要體現(xiàn)在對(duì)文字語(yǔ)言、符號(hào)語(yǔ)言及圖形語(yǔ)言的互相轉(zhuǎn)化;對(duì)運(yùn)算求解能力的考查主要是算法和推理的考查,考查以代數(shù)運(yùn)算為主;對(duì)數(shù)據(jù)處理能力的考查主要是考查運(yùn)用概率統(tǒng)計(jì)的基本方法和思想解決實(shí)際問(wèn)題的能力。 (4)對(duì)應(yīng)用意識(shí)的考查主要采用解決應(yīng)用問(wèn)題的形式.命題時(shí)要堅(jiān)持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計(jì)要切合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際和考生的年齡特點(diǎn)并結(jié)合實(shí)踐經(jīng)驗(yàn),使數(shù)學(xué)應(yīng)用問(wèn)題的難度符合考生的水平. (5)對(duì)創(chuàng)新意識(shí)的考查是對(duì)高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問(wèn)題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問(wèn)題時(shí),要注重問(wèn)題的多樣化,體現(xiàn)思維的發(fā)散性;精心設(shè)計(jì)考查數(shù)學(xué)主體內(nèi)容,體現(xiàn)數(shù)學(xué)素質(zhì)的試題;也要反映數(shù)、形運(yùn)動(dòng)變化的試題以及研究型、探索型、開(kāi)放型等類型的試題. 數(shù)學(xué)科的命題,在考查基礎(chǔ)知識(shí)的基礎(chǔ)上,注重對(duì)數(shù)學(xué)思想方法的考查,注重對(duì)數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求.二、考試范圍與要求 本部分包括必考內(nèi)容和選考內(nèi)容兩部分.必考內(nèi)容為課程標(biāo)準(zhǔn)的必修內(nèi)容和選修系列1的內(nèi)容;選考內(nèi)容為課程標(biāo)準(zhǔn)的選修系列4的“幾何證明選講”、“做標(biāo)系與參數(shù)方程”、“不等式選講”等3個(gè)專題.(一)必考內(nèi)容與要求1集合(1)集合的含義與表示 了解集合的含義、元素與集合的屬于關(guān)系. 能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題.(2)集合間的基本關(guān)系 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集. 在具體情境中,了解全集與空集的含義.(3)集合的基本運(yùn)算 理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集. 理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集. 能使用韋恩(Venn)圖表達(dá)集合的關(guān)系及運(yùn)算.2函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù))(1)函數(shù) 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念. 在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù). 了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用. 理解函數(shù)的單調(diào)性、最大值、最小值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義. 會(huì)運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì).(2)指數(shù)函數(shù) 了解指數(shù)函數(shù)模型的實(shí)際背景. 理解有理指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算. 理解指數(shù)函數(shù)的概念,并理解指數(shù)函數(shù)的單調(diào)性掌握指數(shù)函數(shù)圖像通過(guò)的特殊點(diǎn). 知道指數(shù)函數(shù)是一類重要的函數(shù)模型.(3)對(duì)數(shù)函數(shù) 理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);了解對(duì)數(shù)在簡(jiǎn)化運(yùn)算中的作用. 理解對(duì)數(shù)函數(shù)的概念;理解對(duì)數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過(guò)的特殊點(diǎn). 知道對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型; 了解指數(shù)函數(shù) 與對(duì)數(shù)函數(shù) 互為反函數(shù)(a0,且a1).(4)冪函數(shù) 了解冪函數(shù)的概念. 結(jié)合函數(shù) 的圖像,了解它們的變化情況.(5)函數(shù)與方程 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個(gè)數(shù). 根據(jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解.(6)函數(shù)模型及其應(yīng)用 了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)的增長(zhǎng)特征.知道直線上升、指數(shù)增長(zhǎng)、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義. 了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.3立體幾何初步(1)空間幾何體 認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu). 能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二側(cè)法畫(huà)出它們的直觀圖. 會(huì)用平行投影與中心投影兩種方法,畫(huà)出簡(jiǎn)單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式. 會(huì)畫(huà)某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求). 了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).(2)點(diǎn)、直線、平面之間的位置關(guān)系 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi).公理2:過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.公理4:平行于同一條直線的兩條直線互相平行.定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ). 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定定理.理解以下判定定理.如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行.如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直.理解以下性質(zhì)定理,并能夠證明.如果一條直線與一個(gè)平面平行,經(jīng)過(guò)該直線的任一個(gè)平面與此平面的交線和該直線平行.如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線相互平行.垂直于同一個(gè)平面的兩條直線平行.如果兩個(gè)平面垂直,那么一個(gè)平面內(nèi)垂直于它們交線的直線與另一個(gè)平面垂直. 能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡(jiǎn)單命題.4平面解析幾何初步(1)直線與方程 在平面直角坐標(biāo)系中,結(jié)合具體圖形,確定直線位置的幾何要素. 理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式. 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直. 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),了解斜截式與一次函數(shù)的關(guān)系. 能用解方程組的方法求兩直線的交點(diǎn)坐標(biāo). 掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離.(2)圓與方程 掌握確定圓的幾何要素,掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程. 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個(gè)圓的方程,判斷兩圓的位置關(guān)系. 能用直線和圓的方程解決一些簡(jiǎn)單的問(wèn)題. 初步了解用代數(shù)方法處理幾何問(wèn)題的思想.(3)空間直角坐標(biāo)系 了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)表示點(diǎn)的位置. 會(huì)推導(dǎo)空間兩點(diǎn)間的距離公式.5算法初步(1)算法的含義、程序框圖 了解算法的含義,了解算法的思想. 理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán).(2)基本算法語(yǔ)句理解幾種基本算法語(yǔ)句輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句的含義.6統(tǒng)計(jì)(1)隨機(jī)抽樣 理解隨機(jī)抽樣的必要性和重要性. 會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.(2)用樣本估計(jì)總體 了解分布的意義和作用,會(huì)列頻率分布表,會(huì)畫(huà)頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點(diǎn). 理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差. 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并給出合理的解釋. 會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想. 會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題.(3)變量的相關(guān)性 會(huì)作兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)的散點(diǎn)圖,會(huì)利用散點(diǎn)圖認(rèn)識(shí)變量間的相關(guān)關(guān)系. 了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程.7概率(1)事件與概率 了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別. 了解兩個(gè)互斥事件的概率加法公式.(2)古典概型理解古典概型及其概率計(jì)算公式.會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率.(3)隨機(jī)數(shù)與幾何概型了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率.了解幾何概型的意義.8基本初等函數(shù)(三角函數(shù))(1)任意角的概念、弧度制 了解任意角的概念. 了解弧度制概念,能進(jìn)行弧度與角度的互化.(2)三角函數(shù) 理解任意角三角函數(shù)(正弦、余弦、正切)的定義. 能利用單位圓中的三角函數(shù)線推導(dǎo)出 , 的正弦、余弦、正切的誘導(dǎo)公式,能畫(huà)出 的圖像,了解三角函數(shù)的周期性. 理解正弦函數(shù)、余弦函數(shù)在區(qū)間0,2的性質(zhì)(如單調(diào)性、最大和最小值以及與 軸交點(diǎn)等).理解正切函數(shù)在區(qū)間( )的單調(diào)性. 理解同角三角函數(shù)的基本關(guān)系式: 了解函數(shù) 的物理意義;能畫(huà)出 的圖像,了解參數(shù) 對(duì)函數(shù)圖像變化的影響. 了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會(huì)用三角函數(shù)解決一些簡(jiǎn)單實(shí)際問(wèn)題.9平面向量(1)平面向量的實(shí)際背景及基本概念了解向量的實(shí)際背景.理解平面向量的概念,理解兩個(gè)向量相等的含義.理解向量的幾何表示.(2)向量的線性運(yùn)算 掌握向量加法、減法的運(yùn)算,并理解其幾何意義. 掌握向量數(shù)乘的運(yùn)算及其意義,理解兩個(gè)向量共線的含義. 了解向量線性運(yùn)算的性質(zhì)及其幾何意義.(3)平面向量的基本定理及坐標(biāo)表示 了解平面向量的基本定理及其意義. 掌握平面向量的正交分解及其坐標(biāo)表示. 會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算. 理解用坐標(biāo)表示的平面向量共線的條件.(4)平面向量的數(shù)量積 理解平面向量數(shù)量積的含義及其物理意義. 了解平面向量的數(shù)量積與向量投影的關(guān)系. 掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算. 能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.(5)向量的應(yīng)用會(huì)用向量方法解決某些簡(jiǎn)單的平面幾何問(wèn)題.會(huì)用向量方法解決簡(jiǎn)單的力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題.10三角恒等變換(1)和與差的三角函數(shù)公式 會(huì)用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式. 能利用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式. 能利用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.(2)簡(jiǎn)單的三角恒等變換能運(yùn)用上述公式進(jìn)行簡(jiǎn)單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對(duì)這三組公式不要求記憶).11解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.(2) 應(yīng)用能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題.12數(shù)列(1)數(shù)列的概念和簡(jiǎn)單表示法了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖像、通項(xiàng)公式).了解數(shù)列是自變量為正整數(shù)的一類函數(shù).(2)等差數(shù)列、等比數(shù)列 理解等差數(shù)列、等比數(shù)列的概念. 掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式. 能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題. 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.13不等式(1)不等關(guān)系了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.(2)一元二次不等式 會(huì)從實(shí)際情境中抽象出一元二次不等式模型. 通過(guò)函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系. 會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.(3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題 會(huì)從實(shí)際情境中抽象出二元一次不等式組. 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組. 會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.(4)基本不等式: 了解基本不等式的證明過(guò)程. 會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.14常用邏輯用語(yǔ)(1)命題及其關(guān)系 理解命題的概念.了解“若p,則q”形式的命題的逆命題、否命題與逆否命題,會(huì)分析四種命題的相互關(guān)系. 理解必要條件、充分條件與充要條件的意義.(2)簡(jiǎn)單的邏輯聯(lián)結(jié)詞了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義.(3)全稱量詞與存在量詞 理解全稱量詞與存在量詞的意義. 能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定.15圓錐曲線與方程圓錐曲線與方程 了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫(huà)現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用. 掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì). 了解雙曲線、拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡(jiǎn)單幾何性質(zhì). 理解數(shù)形結(jié)合的思想. 了解圓錐曲線的簡(jiǎn)單應(yīng)用.16導(dǎo)數(shù)及其應(yīng)用(1)導(dǎo)數(shù)概念及其幾何意義 了解導(dǎo)數(shù)概念的實(shí)際背景. 理解導(dǎo)數(shù)的幾何意義.(2)導(dǎo)數(shù)的運(yùn)算 能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=C(C為常數(shù)), 的導(dǎo)數(shù). 能利用下面給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).常見(jiàn)基本初等函數(shù)的導(dǎo)數(shù)公式: (C為常數(shù)); , nN+; ; ; ; ; ; .(a0,且a1)常用的導(dǎo)數(shù)運(yùn)算法則:法則1 法則2 .法則3 .(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次). 了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次);會(huì)求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).(4)生活中的優(yōu)化問(wèn)題.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題.17統(tǒng)計(jì)案例了解下列一些常見(jiàn)的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問(wèn)題.(1)獨(dú)立性檢驗(yàn)了解獨(dú)立性檢驗(yàn)(只要求22列聯(lián)表)的基本思想、方法及其簡(jiǎn)單應(yīng)用.(2) 回歸分析了解回歸分析的基本思想、方法及其簡(jiǎn)單應(yīng)用.18推理與證明(1)合情推理與演繹推理 了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用. 了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理. 了解合情推理和演繹推理之間的聯(lián)系和差異.(2)直接證明與間接證明 了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn). 了解間接證明的一種基本方法反證法;了解反證法的思考過(guò)程、特點(diǎn).19數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(1)復(fù)數(shù)的概念理解復(fù)數(shù)的基本概念.理解復(fù)數(shù)相等的充要條件. 了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.(2)復(fù)數(shù)的四則運(yùn)算會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.20框圖(1)流程圖 了解程序框圖. 了解工序流程圖(即統(tǒng)籌圖). 能繪制簡(jiǎn)單實(shí)際問(wèn)題的流程圖,了解流程圖在解決實(shí)際問(wèn)題中的作用.(2)結(jié)構(gòu)圖了解結(jié)構(gòu)圖.會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過(guò)的知識(shí)、整理收集到的資料信息.(二)選考內(nèi)容與要求1幾何證明選講(1)了解平行線截割定理,會(huì)證直角三角形射影定理.(2)會(huì)證明并應(yīng)用圓周角定理、圓的切線的判定定理及性質(zhì)定理.(3)會(huì)證明并應(yīng)用相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理.(4)了解平行投影的含義,通過(guò)圓柱與平面的位置關(guān)系,了解平行投影;會(huì)證平面與圓柱面的截線是橢圓(特殊情形是圓). (5)了解下面定理:定理在空間中,取直線 為軸,直線 與 相交于點(diǎn) ,其夾角為 圍繞 旋轉(zhuǎn)得到以 為頂點(diǎn), 為母線的圓錐面,任取平面,若它與軸 交角為 (與 平行,記 0),則: ,平面與圓錐的交線為橢圓; ,平面與圓錐的交線為拋物線; ,平面與圓錐的交線為雙曲線.(6)會(huì)利用丹迪林(Dandelin)雙球(如圖所示,這兩個(gè)球位于圓錐的內(nèi)部,一個(gè)位于平面的上方,一個(gè)位于平面的下方,并且與平面及圓錐面均相切,其切點(diǎn)分別為F、E)證明上述定理情形:當(dāng)時(shí),平面與圓錐的交線為橢圓.(圖中上、下兩球與圓錐面相切的切點(diǎn)分別為點(diǎn)B和點(diǎn)C,線段BC與平面相交于點(diǎn)A.)(7)會(huì)證明以下結(jié)果:在(6)中,一個(gè)丹迪林球與圓錐面的交線為一個(gè)圓,并與圓錐的底面平行,記這個(gè)圓所在平面為;如果平面與平面的交線為m,在(5)中橢圓上任取一點(diǎn)A,該丹迪林球與平面的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線m的距離比是小于1的常數(shù)e.(稱點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率.)(8)了解定理(5)中的證明,了解當(dāng) 無(wú)限接近 時(shí),平面的極限結(jié)果.2.坐標(biāo)系與參數(shù)方程(1)坐標(biāo)系 理解坐標(biāo)系的作用. 了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況. 能在極坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化. 能在極坐標(biāo)系中給出簡(jiǎn)單圖形(如過(guò)極點(diǎn)的直線、過(guò)極點(diǎn)或圓心在極點(diǎn)的圓)的方程.通過(guò)比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時(shí)選擇適當(dāng)坐標(biāo)系的意義. 了解柱坐標(biāo)系、球坐標(biāo)系中表示空間中點(diǎn)的位置的方法,并與空間直角坐標(biāo)系中表示點(diǎn)的位置的方法相比較,了解它們的區(qū)別.(2)參數(shù)方程 了解參數(shù)方程,了解參數(shù)的意義. 能選擇適當(dāng)?shù)膮?shù)寫(xiě)出直線、圓和圓錐曲線的參數(shù)方程. 了解平擺線、漸開(kāi)線的生成過(guò)程,并能推導(dǎo)出它們的參數(shù)方程. 了解其他擺線的生成過(guò)程,了解擺線在實(shí)際中的應(yīng)用,了解擺線在表示行星運(yùn)動(dòng)軌道中的作用.3不等式選講(1)理解絕對(duì)值的幾何意義,并能利用含絕對(duì)值不等式的幾何意義證明以下不等式:|a+b|a|+|b|a-b|a-c|+|c-b|會(huì)利用絕對(duì)值的幾何意義求解以下類型的不等式:|ax+b|c;|ax+b|c;|x-a|+|x-b|c.(2)了解下列柯西不等式的幾種不同形式,理解它們的幾何意義,并會(huì)證明.柯西不等式的向量形式:|(a2+b2)(c2+d2)(ac+bd)2 (通常稱為平面三角不等式)(3)會(huì)用參數(shù)配方法討論柯西不等式的一般情形: (4)會(huì)用向量遞歸方法討論排序不等式(5)了解數(shù)學(xué)歸納法的原理及其使用范圍,會(huì)用數(shù)學(xué)歸納法證明一些簡(jiǎn)單問(wèn)題(6)會(huì)用數(shù)學(xué)歸納法證明貝努利不等式:(1+x)n1+nx (x-1,x0,n為大于1的正整數(shù)),了解當(dāng)n為大于1的實(shí)數(shù)時(shí)貝努利不等式也成立(7)會(huì)用上述不等式證明一些簡(jiǎn)單問(wèn)題。能夠利用平均值不等式、柯西不等式求一些特定函數(shù)的極值(8)了解證明不等式的基本方法;比較法、綜合法、分析法、反證法、放縮法命題指導(dǎo)思想1普通高等學(xué)校招生全國(guó)統(tǒng)一考試,是由合格的高中畢業(yè)生和具有同等學(xué)力的考生參加的選拔性考試2命題注重考查考生的數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法,考查考生對(duì)數(shù)學(xué)本質(zhì)的理解水平,體現(xiàn)課程標(biāo)準(zhǔn)對(duì)知識(shí)與技能、過(guò)程與方法、情感態(tài)度與價(jià)值觀等目標(biāo)要求3命題注重試題的創(chuàng)新性、多樣性和選擇性,具有一定的探究性和開(kāi)放性既要考查考生的共同基礎(chǔ),又要滿足不同考生的選擇需求合理分配必考和選考內(nèi)容的比例,對(duì)選考內(nèi)容的命題應(yīng)做到各選考專題的試題分值相等,力求難度均衡4試卷應(yīng)具有較高的信度、效度,必要的區(qū)分度和適當(dāng)?shù)碾y度考試形式與試卷結(jié)構(gòu) 一、考試形式 考試采用閉卷、筆試形式全卷滿分為150分,考試時(shí)間為120分鐘 二、試卷結(jié)構(gòu) 全卷分為第卷和第卷兩部分 第卷為12個(gè)選擇題,全部為必考內(nèi)容第卷為非選擇題,分為必考和選考兩部分必考部分題由4個(gè)填空題和5個(gè)解答題組成;選考部分由選修系列4的“幾何證明選講”、“坐標(biāo)系與參數(shù)方程”、“不等式選講”各命制1個(gè)解答題,考生從3題中任選1題作答,若多做,則按所做的第一題給分 1試題類型 試題分為選擇題、填空題和解答題三種題型選擇題是四選一型的單項(xiàng)選擇題;填空題只要求直接填寫(xiě)結(jié)果,不必寫(xiě)出計(jì)算或推證過(guò)程;解答題包括計(jì)算題、證明題,解答題要寫(xiě)出文字說(shuō)明、演算步驟或推證過(guò)程三種題型分?jǐn)?shù)的百分比約為:選擇題40%左右,填空題10%左右,解答題50%左右 2難度控制 試題按其難度分為容易題、中等難度題和難題難度在0.7以上的試題為容易題,難度為0.40.7的試題是中等難度題,難度在0.4以下的試題界定為難題三種難度的試題應(yīng)控制合適的分值比例,試卷總體難度適中考核目標(biāo)與要求一、知識(shí)要求 知識(shí)是指普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進(jìn)行運(yùn)算,處理數(shù)據(jù)、繪制圖表等基本技能. 對(duì)知識(shí)的要求由低到高分為三個(gè)層次,依次是知道(了解、模仿)、理解(獨(dú)立操作)、掌握(運(yùn)用、遷移),且高一級(jí)的層次要求包括低一級(jí)的層次要求 1知道(了解、模仿):要求對(duì)所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會(huì))在有關(guān)的問(wèn)題中識(shí)別和認(rèn)識(shí)它. 這一層次所涉及的主要行為動(dòng)詞有:了解,知道、識(shí)別,模仿,會(huì)求、會(huì)解等. 2理解(獨(dú)立操作):要求對(duì)所列知識(shí)內(nèi)容有較深刻的理性認(rèn)識(shí),知道知識(shí)間的邏輯關(guān)系,能夠?qū)λ兄R(shí)作正確的描述說(shuō)明并用數(shù)學(xué)語(yǔ)言表達(dá),能夠利用所學(xué)的知識(shí)內(nèi)容對(duì)有關(guān)問(wèn)題作比較、判別、討論,具備利用所學(xué)知識(shí)解決簡(jiǎn)單問(wèn)題的能力. 這一層次所涉及的主要行為動(dòng)詞有:描述,說(shuō)明,表達(dá)、表示,推測(cè)、想象,比較、判別、判斷,初步應(yīng)用等. 3掌握(運(yùn)用、遷移):要求能夠?qū)λ械闹R(shí)內(nèi)容能夠推導(dǎo)證明,利用所學(xué)知識(shí)對(duì)問(wèn)題能夠進(jìn)行分析、研究、討論,并且加以解決. 這一層次所涉及的主要行為動(dòng)詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問(wèn)題等.二、能力要求 能力是指空間想像能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí). 1空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì). 2抽象概括能力:對(duì)具體的、生動(dòng)的實(shí)例,在抽象概括的過(guò)程中,發(fā)現(xiàn)研究對(duì)象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問(wèn)題或作出新的判斷. 3推理論證能力:根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實(shí)性的初步的推理能力推理包括合情推理和演繹推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明. 4運(yùn)算求解能力:會(huì)根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問(wèn)題的條件,尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算. 5數(shù)據(jù)處理能力:會(huì)收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對(duì)研究問(wèn)題有用的信息,并作出判斷數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計(jì)或統(tǒng)計(jì)案例中的方法對(duì)數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問(wèn)題. 6應(yīng)用意識(shí):能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡(jiǎn)單的數(shù)學(xué)問(wèn)題;能理解對(duì)問(wèn)題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,建立數(shù)學(xué)模型;應(yīng)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證,并能用數(shù)學(xué)語(yǔ)言正確地表達(dá)和說(shuō)明.應(yīng)用的主要過(guò)程是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,構(gòu)造數(shù)學(xué)模型,并加以解決. 7創(chuàng)新意識(shí):能發(fā)現(xiàn)問(wèn)題、提出問(wèn)題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性地解決問(wèn)題創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn).對(duì)數(shù)學(xué)問(wèn)題的“觀察、猜測(cè)、抽象、概括、證明”,是發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的重要途徑,對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的程度越高,顯示出的創(chuàng)新意識(shí)也就越強(qiáng).三、個(gè)性品質(zhì)要求 個(gè)性品質(zhì)是指考生個(gè)體的情感、態(tài)度和價(jià)值觀.要求考生具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義. 要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹(shù)立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.四、考查要求 數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過(guò)分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既要全面又要突出重點(diǎn),對(duì)于支撐學(xué)科知識(shí)體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識(shí)的綜合性,不刻意追求知識(shí)的覆蓋面.從學(xué)科的整體高度和思維價(jià)值的高度考慮問(wèn)題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度. 數(shù)學(xué)思想和方法是數(shù)學(xué)知識(shí)在更高層次上的抽象和概括,蘊(yùn)涵在數(shù)學(xué)知識(shí)發(fā)生、發(fā)展和應(yīng)用的過(guò)程中,能夠遷移并廣泛用于相關(guān)學(xué)科和社會(huì)生活因此,對(duì)數(shù)學(xué)思想和方法的考查必然要與數(shù)學(xué)知識(shí)的考查結(jié)合進(jìn)行,通過(guò)對(duì)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想和方法理解和掌握的程度考查時(shí)要從學(xué)科整體意義和思想價(jià)值立意,要有明確的目的,加強(qiáng)針對(duì)性,注重通性通法,淡化特殊技巧,有效地檢測(cè)考生對(duì)中學(xué)數(shù)學(xué)知識(shí)中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度 數(shù)學(xué)是一門思維的科學(xué),是培養(yǎng)理性思維的重要載體,通過(guò)空間想象、直覺(jué)猜想、歸納抽象、符號(hào)表達(dá)、運(yùn)算推理、演繹證明和模式構(gòu)建等諸方面,對(duì)客觀事物中的數(shù)量關(guān)系和數(shù)學(xué)模式作出思考和判斷,形成和發(fā)展理性思維,構(gòu)成數(shù)學(xué)能力的主題對(duì)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料對(duì)知識(shí)的考查側(cè)重于理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來(lái)檢測(cè)考生將知識(shí)遷移到不同情境中去的能力,從而檢測(cè)出考生個(gè)體理性思維的廣度和深度以及進(jìn)一步學(xué)習(xí)的潛能 對(duì)能力的考查,以思維能力為核心全面考查各種能力,強(qiáng)調(diào)綜合性、應(yīng)用性,切合學(xué)生實(shí)際運(yùn)算能力是思維能力和運(yùn)算技能的結(jié)合,它不僅包括數(shù)的運(yùn)算,還包括式的運(yùn)算,對(duì)考生運(yùn)算能力的考查主要是對(duì)算理合邏輯推理的考查,以含字母的式的運(yùn)算為主空間想象能力是對(duì)空間形式的觀察、分析、抽象的能力,考查時(shí)注意與推理相結(jié)合實(shí)踐能力在考試中表現(xiàn)為解答應(yīng)用問(wèn)題,考查的重點(diǎn)是客觀事物的數(shù)學(xué)化,這個(gè)過(guò)程主要是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,構(gòu)造數(shù)學(xué)模型,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并加以解決命題時(shí)要堅(jiān)持“貼近生活,背景公平,控制難度”的原則,要把握好提出問(wèn)題所涉及的數(shù)學(xué)知識(shí)和方法的深度和廣度,要結(jié)合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際,讓數(shù)學(xué)應(yīng)用問(wèn)題的難度更加符合考生的水平,引導(dǎo)考試自覺(jué)地置身于現(xiàn)實(shí)社會(huì)的大環(huán)境中,關(guān)心自己身邊的數(shù)學(xué)問(wèn)題,促使學(xué)生在學(xué)習(xí)和實(shí)踐中形成和發(fā)展數(shù)學(xué)應(yīng)用的意識(shí) 創(chuàng)新意識(shí)和創(chuàng)造能力是理想思維的高層次表現(xiàn)在數(shù)學(xué)的學(xué)習(xí)和研究過(guò)程中,知識(shí)的遷移、組合、融會(huì)的程度越高,展示能力的區(qū)域就越寬泛,顯現(xiàn)出的創(chuàng)造意識(shí)也就越強(qiáng)命題時(shí)要注意試題的多樣性,涉及考查數(shù)學(xué)主體內(nèi)容,體現(xiàn)數(shù)學(xué)素質(zhì)的題目,反映數(shù)、形運(yùn)動(dòng)變化的題目,研究型、探索型或開(kāi)放型的題目,讓考生獨(dú)立思考,自主探索,發(fā)揮主觀能動(dòng)性,探究問(wèn)題的本質(zhì),尋求合適的解題工具,梳理解題程序,為考生展現(xiàn)創(chuàng)新意識(shí)、發(fā)揮創(chuàng)造能力創(chuàng)設(shè)廣闊的空間、考試范圍與要求(一)必考內(nèi)容與要求1集合(1)集合的含義與表示 了解集合的含義、元素與集合的屬于關(guān)系. 能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題.(2)集合間的基本關(guān)系 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集. 在具體情境中,了解全集與空集的含義.(3)集合的基本運(yùn)算 理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集. 理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集. 能使用韋恩(Venn)圖表達(dá)集合間的基本關(guān)系及集合的基本運(yùn)算.2函數(shù)概念與基本初等函數(shù)(1)函數(shù) 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念. 在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù). 了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用(函數(shù)分段不超過(guò)三段). 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;了解函數(shù)奇偶性的含義. 會(huì)運(yùn)用基本初等函數(shù)的圖像分析函數(shù)的性質(zhì).(2)指數(shù)函數(shù) 了解指數(shù)函數(shù)模型的實(shí)際背景. 理解有理指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算. 理解指數(shù)函數(shù)的概念及其單調(diào)性,掌握指數(shù)函數(shù)圖像通過(guò)的特殊點(diǎn),會(huì)畫(huà)底數(shù)為2,3,10,1/2,1/3的指數(shù)函數(shù)的圖像. 體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型.(3)對(duì)數(shù)函數(shù) 理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);了解對(duì)數(shù)在簡(jiǎn)化運(yùn)算中的作用. 理解對(duì)數(shù)函數(shù)的概念及其單調(diào)性,掌握對(duì)數(shù)函數(shù)圖像通過(guò)的特殊點(diǎn),會(huì)畫(huà)底數(shù)為2,10,1/2的對(duì)數(shù)函數(shù)的圖像. 體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型; 了解指數(shù)函數(shù) 與對(duì)數(shù)函數(shù) (a0,且a1)互為反函數(shù).(4)冪函數(shù) 了解冪函數(shù)的概念. 結(jié)合函數(shù) 的圖像,了解它們的變化情況.(5)函數(shù)與方程 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個(gè)數(shù).(6)函數(shù)模型及其應(yīng)用 了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的增長(zhǎng)特征,結(jié)合具體實(shí)例體會(huì)直線上升、指數(shù)增長(zhǎng)、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義. 了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.3立體幾何初步(1)空間幾何體 認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu). 能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二側(cè)法畫(huà)出它們的直觀圖. 會(huì)用平行投影與中心投影兩種方法,畫(huà)出簡(jiǎn)單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式. 了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).(2)點(diǎn)、直線、平面之間的位置關(guān)系 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi).公理2:過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.公理4:平行于同一條直線的兩條直線互相平行.定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ). 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定定理.理解以下判定定理.如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行.如果一條直線與一個(gè)平面內(nèi)的兩條相

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論