ーー物理実験室検證ー.pdf_第1頁
ーー物理実験室検證ー.pdf_第2頁
ーー物理実験室検證ー.pdf_第3頁
ーー物理実験室検證ー.pdf_第4頁
ーー物理実験室検證ー.pdf_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費(fèi)閱讀

ーー物理実験室検證ー.pdf.pdf 免費(fèi)下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Acoustic Black Holes 物理 実験室 検証 京都大學(xué)大學(xué)院 人間 環(huán)境學(xué)研究科 宇宙論 重力 M2 奧住 聡 共同研究者 阪上雅昭 京大 人 環(huán) 吉田英生 京大 工 Outline 1 Introduction What is an Acoustic Black Hole 2 Acoustic BH Experiment Project 3 Application I Hawking Radiation classical analogue 4 Application II Quasinormal Ringing 1 Introduction What is an Acoustic Black Hole Interest and Difficulty in Black Hole Physics Black holes are the most fascinating objects in GR Black holes are the most fascinating objects in GR Black holes are the most fascinating objects in GR Black holes are the most fascinating objects in GR Hawking radiation quantum thermal emission from BHs Numerous quantum classical phenomena have been predicted For example Quasinormal Ringing classical characteristic oscillation of BHs However many of them are difficult to observe To examine them an alternative way is nessesary What is an Acoustic Black Hole Acoustic BH Transonic Flow down 1 M 1 s cv0 s cv0 s cv wave eq for velocity potential perturbation Sound Waves in Inhomogeneous Fluid Flow Perturbation This is preciselypreciselypreciselyprecisely the eq for a massless scalar field in a geometry with metric ji ij ii s s dxdxdtdxvdtc c ds 2 2222 v 22 dx vc v dtdT s 2221 2 2 2 2 2 22 1 1 dzdy c dx c v dT c v c c ds sss s s 0 0 v v Unruh Phys Rev Lett 46 1351 1981 2 sd Acoustic Metric Metric for Sound Waves Furthermore setting Acoustic Metric 21 2 2 22 2 2 2 1 1 dx c v dTc c v sd s s s 21 2 2 ff 22 2 2 ff 2 1 1 dr c v dtc c v sd S Acoustic Metric Schwarzschild Metric sonic pointhorizon Acoustic Metric Metric for Sound Waves Unruh Phys Rev Lett 46 1351 1981 coordinate axial velocityfluid sound of speed 22 x dx vc v tT v c s s coordinate radial timeildSchwarzsch velocityfall free light of speed 2 1 ff r t rrcv c S g 2 Acoustic BH Experiment Project Black Holes in Laval nozzles throat Laval Nozzle Convergent Divergent Nozzle Two Types of Steady Flow in Laval Nozzles flowflow Pressure difference pu pd determines the flow in the nozzle pu pd throatthroat Subsonic flow max M at throat but M 1 everywhere Transonic flow Transonic flow Transonic flow Transonic flow M 1 at throat supersonic region exists may have a steady shock downstream THEORY Graduate School of H derived from QFT in curved ST mixing of positive negative freq modes surface gravity Properties of Hawking Radiation Too weak to observe in the case of astrophysical BHs How can we study Hawking Radiation Hawking radiation of phonon in airflow impossible possible for BEC transonic flow Garay et al 2000 Nevertheless some classical phenomena in acoustic BHs will shed light on quantum aspects of Hawking radiation classical counterpert of Hawking radiation Positive Negative Frequency Mode Mixing observerinfinity deformed horizon collapse BH positivepositivepositivepositive freq mode CLASSICAL surfacre gravity exponential exponential exponential exponential redshiftredshiftredshiftredshift Nonstationary evolution of ST Change of vacuum state star before collapse negativenegativenegativenegative freq part appears Particle Creation quantization Classical Counterpart of Hawking Radiation Inner product Fourier tr Planck distribution negativenegativenegativenegative freq mode from infinity positivepositivepositivepositive freq mode for an observer Nouri Zunoz Padmanabhan 1998 Experimental Setting Step 1 subsonic background flow no horizonno horizonno horizonno horizon Send sinusoidal sound wave against the flow Step 2 transonic background flow horizon presenthorizon presenthorizon presenthorizon present Observe the waveform at upstream region Redshift due to surface gravity incident freq 15kHz horizon formed Numerical Waveform quasi stationary flow geometric acoustics limit Redshift due to surface gravity incident freq 15kHz horizon formed Numerical Waveform quasi stationary flow geometric acoustics limit sinusoidal wave t1 cf Schwarzschild l 2 least damped mode Typical values in laboratories similar to values for astrophysical BHs Numerical Simulation Discussion For future experiments larger Q value is wanted However Q is at most 2 for planar wave modes QNMs of an Acoustic BH surrounded by a half mirror contact surface QNMs for non planar waves Can matched filtering be used in our experiments Summary Acoustic BH Transonic Flow wave eq for sound in perfect fluid wawe eq for a massless scalar field in curved ST sonic point event horizon of a BH Results of numerical simulations strongly suggest that classical counterpart of HR and QN ringing can be realized in a laboratory Appendix Standard Procedure for Calculating QNM Freq s Calculate the S matrix for the potential barrier V Then impose the outgoing B C and obtain s that meet the boundary condition S matrix WKB Approach 0 2 Region I III WKB solutions for truncated V Around 0 exact solution for truncated V Expand V in a Taylor series about the maximum point 0 I II III 1storder Schutz Will 1985 3rdorder Iyer Will 1987 6thorder Konoplya 2004 MatchingMatchingMatchingMatching matching regionsmatching regionsmatching regionsmatching regions 23 12 WKB Approach S Matrix Here Here Here Here is related to is related to is related to is related to by by by by where 1stWKB QNM Solutions by WKB Approach Conditions for QNMs i e QNM frequencyQNM frequencyQNM frequencyQNM frequency 1stWKB value Partially Reflected Quasinormal Modes PRQNMs outgoing B C half mirrorhalf mirrorhalf mirrorhalf mirror B C B C B C B C half mirrorhalf mirrorhalf mirrorhalf mirror c Example Contact Surface in Perfect Fluid Contact surfaceContact surfaceContact surfaceContact surface contact discontinuity discontinuity of the density the pressure p and the fluid velocity v are continuous moves with the surrounding fluid i e vc v partially reflects sound waves vcvv 12 Contact Surface C S Example Contact Surface in Perfect Fluid vcvv 12 If vc v cs refl coeff R for sound waves propagating from 1 to 2 is given

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論