初一不等式難題-經典題訓練(附答案)_第1頁
初一不等式難題-經典題訓練(附答案)_第2頁
初一不等式難題-經典題訓練(附答案)_第3頁
初一不等式難題-經典題訓練(附答案)_第4頁
初一不等式難題-經典題訓練(附答案)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.初一不等式難題,經典題訓練(附答案)1 已知不等式3x-a0的正整數解恰好是1,2,3,則a的取值范圍是_2 已知關于x的不等式組無解,則a的取值范圍是_3 若關于x的不等式(a-1)x-+20的解集為x2,則a的值為( )A 0 B 2 C 0或2 D -14 若不等式組的解集為,則=_5 已知關于x的不等式組的解集為x3時,不等式ax+20的解集是,則的解集是( )A. B C. D. 11.如果關于x的不等式組的整數解僅為1,2,3,那么適合不等式組的整數(m,n)對共有( )對A 49 B 42 C 36 D 1312.已知非負數x,y,z滿足,設,求的最大值與最小值12不等式A卷1

2、不等式2(x + 1) - 的解集為_。2同時滿足不等式7x + 45x 8和的整解為_。3如果不等式的解集為x 5,則m值為_。4不等式的解集為_。5關于x的不等式(5 2m)x -3的解是正數,那么m所能取的最小整數是_。6關于x的不等式組的解集為-1x 1,則ab_。7能夠使不等式(|x| - x )(1 + x ) 0成立的x的取值范圍是_。8不等式2|x - 4| 3的解集為_。9已知a,b和c滿足a2,b2,c2,且a + b + c = 6,則abc=_。10已知a,b是實數,若不等式(2a - b)x + 3a 4b 0的解是_。C卷一、填空題1不等式的解集是_。2不等式|x|

3、 + |y| ”或“3 Bx3或x D無法確定2不等式x 1 (x - 1) 3x + 7的整數解的個數( )A等于4B小于4C大于5D等于53其中是常數,且,則的大小順序是( )ABCD4已知關于x的不等式的解是4xn,則實數m,n的值分別是( )Am = , n = 32 Bm = , n = 34Cm = , n = 38 Dm = , n = 36三、解答題1求滿足下列條件的最小的正確整數,n:對于n,存在正整數k,使成立。2已知a,b,c是三角形的三邊,求證:3若不等式組的整數解只有x = -2,求實數k的取值范圍。答案A卷1x22不等式組的解集是-6x ,其中整數解為-6,-5,-

4、4,-3,-2,-1,0,1,2,3由不等式可得(1 m )x 5,則有(1-m)5 = -5, m = 2.4由原不等式得:(7 2k)x +6,當k 時,解集為;當k =時,解集為一切實數。5要使關于x的不等式的解是正數,必須5 2m ,故所取的最小整數是3。62x + a 3的解集為 x ; 5x b 2 的解集為 x 所以原不等式組的解集為 。且 。又題設原不等式的解集為 1 x 1,所以=-1, =1,再結合 ,解得:a = 5, b = 3,所以ab = 157當x0時,|x| - x = x x = 0,于是(|x| - x )(1 + x ) = 0,不滿足原式,故舍去x0當x

5、 0,x應當要使(|x| - x )(1 + x )0,滿足1 + x 0,即x -1,所以x的取值范圍是x - 1。原不等式化為由(1)解得或x 6,由(2)解得 1 x 7,原不等式的解集為1 x 2或6 x 7.9若a,b,c,中某個值小于2,比如a 2,但b2, c2,所以a + b + c 的一元一次不等式為 9 x + 4 0與(2a b )x + 3a 4b 0,所以x C卷1原不等式化為|(x + 1) (x - 4) | x + 2,若(x + 1) (x - 4) 0,即x-1或x4時,有2|x| + |y| 100,0|x|99, 0|y|99,于是x,y分別可取-99到

6、99之間的199個整數,且x不等于y,所以可能的情況如下表:X的取值Y可能取整數的個數0198(|y| 100)1196 (|y| 99)49100 (|y| 51)5099 (|y| 50)983 (|y| 2)991 ( |y| N5鈍角三角形的三邊a, a + 1, a + 2滿足:二、選擇題1當x0且x3時,若x3,則(1)式成立若0x 3,則5 3-x,解得x -2與0x 3矛盾。當x 0時, 解得x 3或x ,故選C2由原不等式等價于分別解得x 2,-1 x 6,原不等式的整數解為0,3,4,5,故應選A3方程組中的方程按順序兩兩分別相減得因為所以,于是有故應選C4令=a (a0)則原不等式等價于由已知條件知(1)的解為2 a 8,取n = 9則,沒有整數K的值,依次取n = 10, n = 11, n = 12, n = 14時,分別得,k都取不到整數,當n = 15時,k取13即可滿足,所以n的最小值是15。2由“三角形兩邊之和大于第三邊”可知,是正分數,再利用分數不等式:,同理3因為x = -2是不等式組的解,把x = - 2代入第2個不等式得(2x + 5) (x + k) = 2(-2) + 5(-2 + k ) 0,解得k -2 ,即第2個不等式的解為 x k,而第1個不等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論