下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁四川文化產(chǎn)業(yè)職業(yè)學院
《智能科學與技術(shù)專業(yè)前沿》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的文本摘要生成中,假設(shè)需要從長篇文章中提取關(guān)鍵信息并生成簡潔準確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點?()A.基于注意力機制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機選擇文章中的段落作為摘要D.不進行任何分析,直接輸出原文的前幾段2、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計算量。以下關(guān)于模型壓縮和量化的敘述,不準確的是()A.可以通過剪枝、量化和低秩分解等方法實現(xiàn)模型壓縮B.模型壓縮和量化會導致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對于大型復雜模型效果不佳D.這些技術(shù)對于在資源受限的設(shè)備上部署人工智能模型具有重要意義3、機器學習是人工智能的重要分支,其中監(jiān)督學習是一種常見的學習方式。以下關(guān)于監(jiān)督學習的描述,不正確的是()A.監(jiān)督學習需要有標記的訓練數(shù)據(jù),即輸入數(shù)據(jù)和對應的期望輸出B.常見的監(jiān)督學習算法包括決策樹、支持向量機和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學習的目標是通過學習訓練數(shù)據(jù)中的模式和規(guī)律,對新的未知數(shù)據(jù)進行準確的預測或分類D.監(jiān)督學習只能處理數(shù)值型數(shù)據(jù),對于文本、圖像等非數(shù)值型數(shù)據(jù)無法處理4、人工智能中的聯(lián)邦學習是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學習的說法,不正確的是()A.聯(lián)邦學習可以在保護數(shù)據(jù)隱私的前提下,實現(xiàn)多個參與方之間的模型訓練和共享B.解決了數(shù)據(jù)在不同機構(gòu)之間難以流通和共享的問題C.聯(lián)邦學習的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應用D.聯(lián)邦學習技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風險5、在人工智能的圖像生成任務中,例如生成逼真的人臉圖像或風景圖像,假設(shè)需要生成具有高度細節(jié)和真實感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(luò)(GANs),通過對抗訓練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機生成像素值來創(chuàng)建圖像6、在人工智能的應用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進行融合,以獲得更準確的車輛狀態(tài)估計B.簡單地將各個傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學習的方法,自動學習不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重7、在人工智能的可解釋性方面,一直是一個研究熱點。假設(shè)開發(fā)了一個用于信用評估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對模型的決策影響最大B.對模型的內(nèi)部結(jié)構(gòu)和參數(shù)進行詳細解釋,讓用戶理解模型的工作原理C.通過生成示例來說明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認為模型的準確性比可解釋性更重要8、人工智能在醫(yī)療影像診斷中的應用不斷發(fā)展。以下關(guān)于人工智能在醫(yī)療影像診斷應用的說法,不正確的是()A.能夠輔助醫(yī)生更快速、準確地檢測病變和異常B.可以提高診斷的一致性和重復性,減少人為誤差C.人工智能的診斷結(jié)果可以完全替代醫(yī)生的專業(yè)判斷D.需要與醫(yī)生的臨床經(jīng)驗和專業(yè)知識相結(jié)合,共同為患者提供診斷服務9、深度學習模型在圖像識別、語音識別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計算資源需求大等挑戰(zhàn)。假設(shè)要訓練一個深度神經(jīng)網(wǎng)絡(luò)來識別各種動物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓練輪數(shù)C.使用數(shù)據(jù)增強技術(shù)D.降低學習率10、人工智能在智能交通系統(tǒng)中的應用可以改善交通流量和安全性。假設(shè)要開發(fā)一個能夠?qū)崟r優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項是最關(guān)鍵的?()A.只考慮當前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進行實時調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行11、在人工智能的研究中,遷移學習是一種有效的技術(shù)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓練好的模型應用于醫(yī)學圖像分析,以下關(guān)于遷移學習的描述,正確的是:()A.可以直接將原模型應用于新的醫(yī)學圖像任務,無需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學習在這種情況下不可能有效C.對原模型進行適當?shù)奈⒄{(diào),并利用少量的醫(yī)學圖像數(shù)據(jù)進行再訓練,可以提高模型在新任務上的性能D.遷移學習只能應用于相似的數(shù)據(jù)類型和任務,不能跨越不同領(lǐng)域12、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對模型的性能有著重要影響。假設(shè)我們要訓練一個用于預測股票價格的模型,以下關(guān)于數(shù)據(jù)的說法,哪一項是正確的?()A.越多的數(shù)據(jù)一定能帶來越好的模型性能B.數(shù)據(jù)中的噪聲和錯誤對模型影響不大C.數(shù)據(jù)的分布和代表性比數(shù)量更重要D.不需要對數(shù)據(jù)進行預處理和清洗13、在人工智能的決策樹算法中,當進行特征選擇來構(gòu)建決策樹時,以下哪種特征選擇標準通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機選擇特征D.選擇特征數(shù)量最多的特征14、人工智能在物流配送中的路徑規(guī)劃方面具有應用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應用的描述,哪一項是不準確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會受到任何突發(fā)情況的影響D.實時更新路況信息,動態(tài)調(diào)整配送路徑,提高配送效率15、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學習C.基于貝葉斯估計D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述信息抽取在自然語言處理中的應用。2、(本題5分)解釋人工智能在圖像識別中的關(guān)鍵技術(shù)。3、(本題5分)談談人工智能中的算法公平性。三、操作題(本大題共5個小題,共25分)1、(本題5分)借助TensorFlow實現(xiàn)一個語音合成模型,能夠?qū)⑤斎氲奈淖洲D(zhuǎn)換為自然流暢的語音,具有不同的音色和語調(diào)。調(diào)整語音的參數(shù),如語速、音高和音量,評估合成語音的質(zhì)量和自然度。2、(本題5分)利用Python實現(xiàn)一個基于規(guī)則的專家系統(tǒng),用于診斷某種疾病。定義疾病的癥狀、規(guī)則和推理邏輯,輸入患者的癥狀信息,系統(tǒng)能夠給出可能的診斷結(jié)果和建議。3、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個基于注意力機制的音頻分類模型,對不同類型的聲音進行準確分類。4、(本題5分)利用Scikit-learn中的層次聚類算法,對基因表達數(shù)據(jù)進行聚類分析。研究基因之間的相似性和功能分組。5、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個自監(jiān)督學習模型,從大量無標簽的自然語言文本數(shù)據(jù)中學習語言的語義表示。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年裝修機械項目發(fā)展計劃
- 2024年適用離婚協(xié)議書模板集錦
- 廣州市物業(yè)公共糾紛調(diào)解與和解
- 化工行業(yè)工藝文件編制
- 鄉(xiāng)村環(huán)境美化執(zhí)行標準
- 樂器店辦公室管理辦法
- 科技館公寓租賃合同
- 跨國公司高管聘用證書及合同
- 腳手架搭建班組施工合同
- 基建項目質(zhì)量控制與改進流程
- 成都市農(nóng)貿(mào)市場建設(shè)技術(shù)要求(2019年版)(完整版)
- 2024-2030年版中國IPVPN服務行業(yè)發(fā)展現(xiàn)狀及投資商業(yè)模式分析報告
- 【7歷期末】安徽省蕪湖市弋江區(qū)2023~2024學年七年級上學期期末考試歷史試卷(含解析)
- 北京市海淀區(qū)2021-2022學年第一學期四年級期末考試語文試卷(含答案)
- 2024-2030年中國企業(yè)大學行業(yè)運作模式發(fā)展規(guī)劃分析報告
- 電動力學-選擇題填空題判斷題和問答題2018
- 房地產(chǎn)激勵培訓
- 山東省濟南市2023-2024學年高二上學期期末考試地理試題 附答案
- 【MOOC】微型計算機原理與接口技術(shù)-南京郵電大學 中國大學慕課MOOC答案
- 違章建筑舉報范文
- 2024幼師年終工作總結(jié)
評論
0/150
提交評論